VLSI Design Laboratory Record

B.E (ECE) – FULL TIME VI SEMESTER

(For the Academic Year 2021-22)

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDYALAYA

(Deemed to be University u/s 3 of UGC Act, 1956) (Accredited with 'A' Grade by NAAC) Enathur, Kanchipuram – 631561

BONAFIDE CERTIFICATE

Place:

Date:

•••••

Faculty in-charge Dr. G. Senthil Kumar

Head of the department Prof. V. Swaminathan

Submitted for the Practical Examination held on

Register No:

Internal Examiner

External examiner

LIST OF EXPERIMENTS

(a) Study of IC design flow using EDA tools of different vendors(b) Introduction to JTAG

FPGA Based Experiments:

1. HDL based **design entry, Test bench creation and simulation** of BCD counters, PRBS generators, Comparators (min 4-bit) / Bothe multiplier / Carry select adder.

2. Synthesis, Placement and Routing (P&R) and post P&R simulation of the components simulated in (Expt. No. 1) above

3. Critical paths and static timing analysis results to be identified. Identify and verify possible conditions under which the blocks will fail to work correctly.

4. **Hardware fusing and testing** of each of the blocks simulated in (Expt. 1).Use of either chipscope feature (Xilinx) or the signal tap feature(Altera) is a must.

5. **Invoke the PLL and demonstrate** the use of the PLL module **for clock generation** in FPGAs.

IC Design Experiments:

6. Design and PSPICE simulation of

(a) Simple 5 transistor differential amplifier. Measure gain, BW, output impedance, ICMR, and CMRR.

(b) Ring Oscillator

7. Layout generation, DRC and LVS Checking, Parasitic Extraction and Resimulation of CMOS Inverter.

8. Synthesis and Standard cell-based design of a circuit simulated in (Expt. 6-b) above -

Synthesis principles, Logical Effort, Interpreting Scripts, Constraints and Library preparation and generation, Boolean Optimization, Optimization for Area, Power.

9. For Expt. 6-b above, Floor Planning, Placement and Routing (P&R), Power and Clock Routing, and post P&R simulation

10. Static Timing analyses procedures and constraints. Critical path considerations.

11. DFT - Scan chain insertion / Clock Tree Synthesis / Stick diagrams

	Index			
EX.NO	NAMEOF THE EXPERIMENTS	PAGE NO	SIGN	
	CYCLE- I			
	Tools- XILINX ISE 14.1			
1	Design Entry and Simulation of Combinational Circuits			
2	Place and Route and Post Place & Route Simulation			
3	Design and FPGA Implementation of Combinational Circuits			
4	Design and FPGA Implementation of Sequential Circuits			
5	Analysis of Area, Power and Delay For Sequential Circuits			
6	Invoke PLL to generate Real Time Clock			
	CYCLE-II			
	Tools – LT-SPICE and ELECTRIC VLSI System			
	Design EDA			
7	Ring Oscillator			
8	Differential Amplifier			
9	CMOS Inverter			
10	Layout CMOS Inverter			
11	CMOS Inverter – Place and Route			
12	Layout CMOS NAND Gate			
	Study Experiments Tools- Synopsys			
13	Static Timing Analysis			
14	DfT-Scan Chain Insertion	1	1	

Procedure for simulation and implementation of EDA tool using XILINX SPARTAN 3E TRAINER KIT

The Spartan-3E Trainer Kit is a demonstration platform intended to become familiar with the new features and availability of the Spartan-3E FPGA family. This Kit provides a easy-to-use development and evaluation platform for Spartan-3E FPGA designs.

SWITCHES	FPGA PINS
SW4	T14
SW5	T12
SW6	Т9
SW7	Τ7
SW8	T2
SW9	G12
SW10	H1
SW11	R3
SW12	N11
SW13	N3
SW14	M13
SW15	M7
SW16	M3
SW17	K4
SW18	J12
SW19	J11

Slide Switch connections with FPGA - INPUT PIN

OUTPUT PINS

LEDS	FPGA PINS
L16	R1
L15	R2
L14	К3
L13	T4
L12	T5
L11	R6
L10	T8
L9	R10
L8	N10
L7	P12
L6	N9
L5	N12
L4	P13
L3	R13
L2	T13
L1	P14

Procedure for simulationandimplementationofXilinxtoolandFPGA

STEP1:

ClickXilinxISE9.1

STEP2:

File->NewprojectandtypetheprojectnameandcheckthetoplevelsourcetypeasHDL

No project is open			
Select:			
of De May Brainst	New Project Wizard - Create New	Project	
The Pitch Coper	Enter a Name and Location for the Pri	iject	
Rt Sources 👩 Snapshots 👔 Libraries	Project Name:	Project Location	
ncesses X	L	D/	
nu juur araidude.	Select the Type of Top-Level Source Top-Level Source Type HDL	for the Fragect	
	More info	<bask. he<="" td=""><td>cancel</td></bask.>	cancel

STEP3:Checkthedevicepropertiesandclicknext

Property Name	Value	
Product Category		1
Family	Shartan 3	50
Device	YC3550	10
Padraga	PO209	50
Speed	-5	
Top-Level Source Type	HDL	-
Synthesis Tool	XST (VHDL/Verilog)	
Simulator	ISE Simulator (VHDL/Verilog)	
Preferred Language	Verilog	
Enable Enhanced Design Summary		
Enable Message Filtering		
Display Incremental Messages		

STEP4: Click New Source And Select the Verilog Module and then give the filename

IP (Coregen & Architecture Wizard) Schematic State Diagram Test Bench WaveForm						
User Document Venlog Module	File name:					
Verlog Test Fixture VHDL Module VHDL Library VHDL Package VHDL Test Bench	HA					
	Location:					
	D:\ssss					
	V Add to project					

STEP5:

Select theInput,Outputportnamesandclickfinish.

Nodule Name HA						
Port Name	Direction		Bus	MSB	LSB	*
A,B	input					
SUM	output					
COUT	output	-				
	input	-				
	input		0			-
	input	-				-
	input					
	input	-				
	input					
	input					
	input					
	linnið	1	1000 L			

STEP6:

Typetheprogramandsaveit

	w Hep	
□○國國國常戶戶月共产国	N = E E E A N = A N	
uzes for: Synthesu/mplementation Cases (access-Specific (access-Specific (accesss-Specific (accessss-Specific (accessss-Specific (accessss-Specific (accessss-Specific (accesssssssssss)))))))))))))))))))))))))	1 "Innexals iso / Jpp ///////////////////////////////////	
Country and Country B. I Surger	9 // Project Name:	
Budaren Canace	10 // Target Devices:	
xesses X	11 // Tool versions:	
toesses for: HA	12 // Description:	
Ad Stating Source Create New Source Were Deary Source Work Deary Source Construct Construct Construct Sourcesure Construct Origination Generate Regionmeng File	14 // Sepandancies: 15 // Periations 17 // Periations 10.9 - File Created 18 // Additional Commentor: 19 // 20 involute SALA,9.50M,COUT; 21 module SALA,9.50M,COUT; 23 experie COUT; 24 experie COUT; 25 experie COUT; 25 experie COUT; 25 experie COUT; 25 experies COUT; 25 experies COUT; 25 experies COUT; 25 experies COUT; 25 experies COUT; 26 experies COUT; 27 endmodule 28	

STEP7:CheckthesynthesizeXSTandchecksyntax

STEP8: Select user constraints-> assign package pins, set port numbers and save it then selectIOBusdelimiterasXSTdefault<>->clickok

Xilinx PACE - D:\ssss\HA.ucf		
File Edit View IOBs Areas Tools Window Help		
□ 📽 🖩 💩 🗰 🧩 😢 💆 🖟 🖩 🗃 🐼	8 2 4 🗂 🖉 📲 🖷 🗆 XQQXQB 🔲 🗖 🔳	
Design Browser	Device Architecture for xc3s50-5-pq208	
Constant of the second se		
e m	Veckage View Architecture View	۔ • // فرار

STEP9:

Doubleclickimplementdesign and clickgenerateprogrammingfile->configuredevice(impact)->finishthenselectbitfile

STEP10:

Rightclickonthexc3s400figure->program-

> filenamethenclick finish and Finally check the functionality in hardware

File Edit View Project Source Process Operations Op	ons Output Debug Window Help	
🗋 🖻 🗗 🖧 着 🛱 🗶 🛤 🔎 🗎] 🖉 🖓 😭 🔊 🗟 🖪 🖬 🖬 🌽 🖗 🕅 🗖	
森 淡 計 計 森 詩 ○ 🍻 🕅		
Sources	×	
Boundary Scan		
Bel Slave Serial		
Bel Select MAP		
Desktop Configuration		
Bal Direct SPI Configuration	1000000 ⁴	
SystemACE	xc3s400	
PROM File Formatter	meale.bit	
	TDO	D
	Progress Dialog [41%]	
	Connection to download cable	
Sources Snapshots Configuration Mc	es 41%	
Processes	×	
Available Operations are:		
Program		
Verify	Cancel	
Get Device ID		
Get Device Signature/Usercode		
Check Idcode		
Read Status Register		

AIM:

To writeaVerilogcodeforthe 4bit Ripple carry adderand 4 bit Comparatorand simulateit usingXilinxproject navigator.

APPARATUS REQUIRED:

S.No	Nameofthe equipment/ software	Quantity
1.	PC with Windows	1
2.	XilinxProject navigator	1

PROCEDURE:

- 1. Start theXilinxISE by using Start →Programfiles → XilinxISE → project navigator
- 2. Click File \rightarrow New Project
- 3. Enter theProject Name and select the location then click next
- 4. Select theDevice and othercategory and click next twice and finish.
- 5. Click on the symbol f FPGA device and then right click \rightarrow click on new source.
- 6. Select the VerilogModule and give the filename→click next and define ports →click next and finish.
- 7. Writingthe VerilogCodein VerilogEditor.
- 8. Run the Check syntax→Process window→synthesize→ double click check syntax.If anyerrorsfound then remove theerrors with proper syntax&coding.
- 9. Click on the symbol f FPGA device and then right click \rightarrow click on new source.
- 10. Select the TestBenchWaveform and give the file name \rightarrow select entity click next and finish.
- 11. Select thedesired parameters forsimulatingyourdesign. In this case combinational circuitand simulation time click finish.
- 12. Assign all inputsignal usingjustclick ongraphand save file.
- 13. From the sourceprocesswindow. ClickBehavioral simulation from drop-down menu
- 14. Select thetest benchfile (.tbw) and click processbutton→ double clickthe SimulationBehavioral Model
- 15. Verify your design inwavewindow byseeingbehavior of output signal with respect to input signal

4-Bit Ripple Carry Adder

Block Diagram:

CODING :

moduleripple_carry_adder(a, b, cin, sum, cout); input [03:0] a; input [03:0] b; inputcin; output [03:0] sum; outputcout; wire [2:0]c; fulladd a1(a[0],b[0],cin, sum[0],c[0]); fulladd a2(a[1],b[1],c[0],sum[1],c[1]); fulladd a3(a[2],b[2],c[1],sum[2],c[2]); fulladd a4(a[3],b[3],c[2],sum[3],cout); endmodule

modulefulladd(a,b,cin,sum,cout);
inputa,b,cin;
outputsum,cout;
assign sum=(a^b^cin);
assigncout=((a&b)|(b&cin)|(a&cin));
endmodule

RTL SCHEMATIC:

SIMULATION OUTPUT:

vilian tet evvilanotiviaalavaiaala isa	Conductors 1									
File Edit View Project Source Process T	- [Simulation] est Bench Simulation Win	dow Help			_					
	າα∣ົ∏∥⊕⊝⊻	¥ @		2 8 M	- 1 🖉 🕅			•	1.0	
		7.	- % % %	-0 - 34						
			@ 1+		A 4 0		X 1000	▼ Ins	-	
		1 5								
Sources for: Behavioral Simulation	Now:						22			
- 🖻 ripple	1000 ns		200	η ΄	100		30 	4		1000
	on cout	0				8				
🗄 - 🔁 gy (gy.tbw)	🗖 🔂 sum[3:0]	4'hF	4'h7	X 4'h6	X 4'h7	X 4'h0)	4m7 -	X 4'ht	X 4'hF	
	6,1 [3]	1						Î		
	3 ,[] [2]	1								
	<mark>ð,[]</mark> [1]	1								
	o <mark>,1</mark> [0]	1						ي إيسا ا		
Sources an Susselect 🕞 Liberrian 🍽 Desig	cin 💦	1								
Sources Shapshore Cibranes	🖳 🖬 🚮 a[3:0]	4'hB	(4'h₿	X 4'hE	X 4'h4	X 4'h7)	4'hF	X 4 hA	X 4'h⊟ i	
	≚ 3,∏[3]	1								
Hierarchy of gy:	6, [2]	0						ي السل		
🖭 🌗 gy - gy	ö , [1]	1								
	ö ,[] [0]	1						ا العط ا	č.	
	🗖 🔂 b[3:0]	4'h3	4'hC	X 4'h7	X 4'h3	X 41	h8	<u> </u>	X 4/h3	
	<mark>6,1</mark> [3]	0								
	6 , [2]	0						<u>ا المحمد</u>		
	<mark>ð,]</mark> [1]	1								
	a <mark>,[]</mark> [0]	1		2						
		• • •	1	-						•
Processes Sim Hierarchy - gy	V ripple.v 🛛 🔀 🛙	esign Sum	mary 📘 📄 rip	ple_carry_add	ler.ngr 👮 r	ipple_carry_add	er.ngc	gy.tbw	Simulation	

RESULT:

Thus the Verilog code for 4 bit Ripple Carry Adder is simulated using Xilinx project navigator.

EXP NO: 2 Place and Route and Post Place & Route Simulation

AIM:

To synthesis 4- Bit Comparator and then Place & Route and Post Place & Root using Implementation option available in Xilinx project navigator.

APPARATUS REQUIRED:

S.No	Nameofthe equipment/ software	Quantity
1.	PC with Windows	1
2.	XilinxProject navigator	1

Theory:

- > Back annotation is the translation of a routed or fitted design to a timing simulation netlist.
- To define the behavior of the FPGA, a hardware description language (HDL) or a schematicdesign methods are used. Common HDLs are VHDL and Verilog. Then, using an electronicdesign automation (EDA) tool, a technology-mapped net list is generated.
- > The net list can then be fitted to the actual FPGA architecture using a process called placeand-route, usually performed by the FPGA vendor"s proprietary place-and-route software.
- > The user will validate the map, place and route results via timing analysis, simulation, andother verification methodologies. Once the design and validation process is complete, thebinary file generated is used to (re)configure the FPGA.
- ➢ In an attempt to reduce the complexity of designing in HDLs, which have been compared to the equivalent of assembly
- ➢ In a typical design flow, an FPGA application developer will simulate the design at multiplestages throughout the design process.
- Initially the RTL description in VHDL or Verilog is simulated by creating test benches tosimulate the system and observe results.
- Then, after the synthesis engine has mapped the design to a net list, the net list is translated toa gate level description where simulation is repeated to confirm the synthesis proceeded without errors.
- Finally the design is laid out in the FPGA at which point propagation delays can be added andthe simulation run again with these values back-annotated onto the net list.
- Place & Route, the process of optimization of logic cells for effective utilization of FPGAarea and the speed of operation, is used to modify and infer the following:
- 1. Re-assignment of Pins
- 2. Re-location of Slices
- 3. Run time minimization

Procedure:

- 1. Start the Xilinx ISE by using Start \rightarrow Program files \rightarrow Xilinx ISE \rightarrow project navigator
- 2. Click File \rightarrow New Project
- 3. Enter the Project Name and select the location then click next
- 4. Select the Device and other category and click next twice and finish.
- 5. Click on the symbol of FPGA device and then right click \rightarrow click on new source.
- 6. Select the Verilog Module and give the file name →click next and define ports →click next and finish.
- 7. Writing the Verilog Code in Verilog Editor.
- 8. Run the Check syntax \rightarrow Process window \rightarrow synthesize \rightarrow double click check syntax. If any errors found then remove the errors with proper syntax & coding.
- 9. Synthesis your design, from the source window select, synthesis/implementation from the window Now double click the Synthesis -XST
- 10. After Synthesis you assign the Pin Value for your design so, →double click the Assign Package Pins
- 11. Enter the Pin value for your input and output signals. if you want see your Pin assignment in FPGA zoom in Architecture View or Package View
- 12. Check the Pins in FPGA. Save file as XST Default click ok and close the window
- 13. Design Implementation begins with the mapping or fitting of a logical design file to a specific device and is complete when the physical design is successfully routed and a bit stream is generated. Double Click Implementation Design.
- 14. After finishing the Implementation, you can view the Implementation report.
- 15. After implementation you see Design Summary, you get the all details about your design. If you want edit the place and route double click View/Edit placed design
- 16. Check where your IOs are placed in FPGA. And zoom to view how Pins are placed in FPGA. You can see where your pins are placed
- 17. Just double click View/Edit Routed Design to view interconnection wires and blocks
- 18. Click the pin to see where its placed in FPGA. And Zoom particular area to see Place and Routing.
- 19. If required to change the place of the design, click and trace to another slice. View changed place and route of the design
- 20. Double click Back annotated Pin Location. Once back annotation is completed, constraint file is generated.

Block Diagram:

Truth Table

INPUT				OU		
A1	A0	B1	BO	A <b< th=""><th>A=B</th><th>A>B</th></b<>	A=B	A>B
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

```
//declare the Verilog module - The inputs and output signals.
module comparator(
  Data_in_A, //input A
  Data_in_B, //input B
  less, //high when A is less than B
            //high when A is equal to B
  equal,
               //high when A is greater than B
  greater
  );
  //what are the input ports.
  input [3:0] Data_in_A;
  input [3:0] Data_in_B;
  //What are the output ports.
  output less;
   output equal;
   output greater;
  //Internal variables
  reg less;
   reg equal;
   reg greater;
   •
       //When the inputs and A or B are changed execute this block
         always @(Data_in_A or Data_in_B)
          begin
            if(Data_in_A > Data_in_B) begin //check if A is bigger than B.
              less = 0;
              equal = 0;
              greater = 1; end
            else if(Data_in_A == Data_in_B) begin //Check if A is equal to B
              less = 0;
              equal = 1;
              greater = 0; end
            else begin //Otherwise - check for A less than B.
              less = 1;
              equal = 0;
              greater =0;
            end
         end
       endmodule
```


TECHNOLOGY SCHEMATIC:

RESULT:

Thus, the Place and Route and Post Place and Route using Implementation options available in Xilinx project navigator were synthesized for 4-bit Comparator.

AIM:

To design and implement Booth Multiplier and Carry select Adder in FPGA Spartan 3E Trainer kit using Xilinx project navigator.

APPARATUS REQUIRED:

S.No	Nameofthe equipment/ software	Quantity
1.	PC with Windows	1
2.	XilinxProject navigator	1

PROCEDURE:

- 1. Start the Xilinx ISE by using Start \rightarrow Program files \rightarrow Xilinx ISE \rightarrow project navigator
- 2. Click File \rightarrow New Project
- 3. Enter the Project Name and select the location then click next
- 4. Select the Device and other category and click next twice and finish.
- 5. Click on the symbol of FPGA device and then right click \rightarrow click on new source.
- 6. Select the Verilog Module and give the file name →click next and define ports →click next and finish.
- 7. Writing the Verilog Code in Verilog Editor.
- 8. Run the Check syntax \rightarrow Process window \rightarrow Synthesize \rightarrow double click check syntax. If any errors found then remove the errors with proper syntax & coding.
- 9. Synthesis your design, from the source window select, synthesis/implementation from the window Now double click the Synthesis -XST.
- 10. After Synthesis, Click on the symbol of FPGA device and Right click and select New Source, Select Implementation Constraints File and type file name and click next.
- 11. Type the Net list and click save.
- 12. Implement the design by double clicking Implement design in the process window.
- 13. Then double click Generate Programming File, Double click Configure Target Device and click OK.
- 14. Double click Create PROM File in the ISE iMPACT window, Select Storage Target Device as Xilinx Flash PROM and click forward.
- 15. Add storage Device as xcf01s [2 M] and click forward, Type Output File Name and Location and click OK.
- 16. Select the corresponding .bit file and click Open, Click No to Add Another Device and Click OK.
- 17. Double click Generate File.
- 18. Double click Boundary Scan and Right click on the window and select Initialize Chain, Now Select the corresponding .mcs file and click open.
- 19. Click OK in the Device Programming Properties window, Download the Program on to the kit by Right clicking on the device icon and select program.
- 20. Verify the output in the target device.

CODING:

```
moduleboothmulti(X, Y, Z);
input signed [3:0] X, Y;
output signed [7:0] Z;
reg signed [7:0] Z;
reg [1:0] temp;
integeri;
reg E1;
reg [3:0] Y1;
always @ (X, Y)
begin
   Z = 8'd0;
   E1 = 1'd0;
for (i = 0; i < 4; i = i + 1)
begin
temp = \{X[i], E1\};\
   Y1 = - Y;
case (temp)
2'd2: Z[7:4] = Z[7:4] + Y1;
2'd1: Z[7:4] = Z[7:4] + Y;
default : begin end
endcase
   Z = Z >> 1;
Z[7] = Z[6];
   E1 = X[i];
end
if (Y == 4'd8)
begin
        Z = -Z;
end
end
endmodule
```

RTL SCHEMATIC:

TECHNOLOGY SCHEMATIC:

PLACE AND ROUTE:

HARDWARE FUSING:

CARRY SELECT ADDER:

BLOCK DIAGRAM:

CODING:

```
modulecarry_select_adder
( input [3:0] A,B,
inputcin,
output [3:0] S,
outputcout
```

);

wire [3:0] temp0,temp1,carry0,carry1;

//for carry 0

fulladder fa00(A[0],B[0],1'b0,temp0[0],carry0[0]); fulladder fa01(A[1],B[1],carry0[0],temp0[1],carry0[1]); fulladder fa02(A[2],B[2],carry0[1],temp0[2],carry0[2]); fulladder fa03(A[3],B[3],carry0[2],temp0[3],carry0[3]);

//for carry 1

fulladder fa10(A[0],B[0],1'b1,temp1[0],carry1[0]); fulladder fa11(A[1],B[1],carry1[0],temp1[1],carry1[1]); fulladder fa12(A[2],B[2],carry1[1],temp1[2],carry1[2]); fulladder fa13(A[3],B[3],carry1[2],temp1[3],carry1[3]);

//mux for carry

multiplexer2 mux_carry(carry0[3],carry1[3],cin,cout);
//mux's for sum
multiplexer2 mux_sum0(temp0[0],temp1[0],cin,S[0]);

multiplexer2 mux_sum1(temp0[1],temp1[1],cin,S[1]); multiplexer2 mux_sum2(temp0[2],temp1[2],cin,S[2]); multiplexer2 mux_sum3(temp0[3],temp1[3],cin,S[3]);

endmodule

```
modulefulladder
     ( inputa,b,cin,
outputsum, carry
       );
assign sum = a \wedge b \wedge cin;
assign carry = (a \& b) | (cin \& b) | (a \& cin);
endmodule
module multiplexer2
     ( input i0,i1,sel,
outputregbitout
       );
always@(i0,i1,sel)
begin
if(sel == 0)
bitout = i0;
else
bitout = i1;
end
endmodule
```

RTL SCHEMATIC:

TECHNOLOGY SCHEMATIC:

PLACE AND ROUTE:

HARDWARE FUSING:

Kilinx - ISE - C:\Xilinx91i\carry\carry.ise - [Bo	undary Scan]					_ 0 ×
Tile Edit View Project Source Process Opera	tions Output Debug Wind	ow Help				_ 8 ×
🗅 🖻 📑 🗿 😓 🔏 🖻 🔯 🖉 🔊 Ø	DIPPXX.	0 🖸 🔊 🛱		2 00 00	S	
COLUCIE COL		A 74 74 74 1	D 38			
		唐 ④ 器 淡		8 88 C 🛷 🕅		
× ×			later de			
Boundary Scan Baundary Scan Balance State Solares State Solares State Solares State SystemACE SPRDM File Formatter	TDIExtended xc3s500e :arry_select_ado TDO	xct04s ke bypass				
Available Operations are: Verify Get Device ID Get Device ID						
Check Idcode Check Idcode Read Status Register Configuration Operations Configuration Operations			Program	Succeeded		
	🚬 Design Summary 🛛 🔽	carry_select_adder.v	Synthesis Report	carry_select_adder.ngr	Bitgen Report	Boundary Scan

RESULT:

Thus, the Hardware fusing and testing of Booth Multiplier and Carry Select Adder were implemented in Spartan 3E FPGA trainer kit using Xilinx project navigator.

EXP NO: 4 Date: **Design and FPGA Implementation of Sequential Circuits**

AIM:

To design and implement Counter in FPGA Spartan 3E Trainer kit using Xilinx project navigator.

APPARATUS REQUIRED:

S.No	Nameofthe equipment/ software	Quantity
1.	PC with Windows	1
2.	XilinxProject navigator	1

PROCEDURE:

- 1. Start the Xilinx ISE by using Start \rightarrow Program files \rightarrow Xilinx ISE \rightarrow project navigator
- 2. Click File → New Project
- 3. Enter the Project Name and select the location then click next
- 4. Select the Device and other category and click next twice and finish.
- 5. Click on the symbol of FPGA device and then right click \rightarrow click on new source.
- 6. Select the Verilog Module and give the file name →click next and define ports →click next and finish.
- 7. Writing the Verilog Code in Verilog Editor.
- 8. Run the Check syntax \rightarrow Process window \rightarrow Synthesize \rightarrow double click check syntax. If any errors found then remove the errors with proper syntax & coding.
- 9. Synthesis your design, from the source window select, synthesis/implementation from the window Now double click the Synthesis -XST.
- 10. After Synthesis, Click on the symbol of FPGA device and Right click and select New Source, Select Implementation Constraints File and type file name and click next.
- 11. Type the Net list and click save.
- 12. Implement the design by double clicking Implement design in the process window.
- 13. Then double click Generate Programming File, Double click Configure Target Device and click OK.
- 14. Double click Create PROM File in the ISE iMPACT window, Select Storage Target Device as Xilinx Flash PROM and click forward.
- 15. Add storage Device as xcf01s [2 M] and click forward, Type Output File Name and Location and click OK.
- 16. Select the corresponding .bit file and click Open, Click No to Add Another Device and Click OK.
- 17. Double click Generate File.
- 18. Double click Boundary Scan and Right click on the window and select Initialize Chain, Now Select the corresponding .mcs file and click open.
- 19. Click OK in the Device Programming Properties window, Download the Program on to the kit by Right clicking on the device icon and select program.
- 20. Verify the output in the target device.
CODING:

Module ripple counter (A0, A1, A2, A3, Count, Reset) Output A0,A1, A2,A3; Input Count,Reset; ff f0(A0, Count, Reset); ff f1(A1, A0, Reset); ff f2(A2, A1, Reset); ff f3(A3, A2, Reset); end module moduleff (Q, CLK, Reset); output Q; input CLK, Reset; reg Q; always @ (negedge CLK or negedge Reset) if (~Reset) Q=1'b0; else $Q=(\sim Q);$ endmodule

RTL SCHEMATIC:

TECHNOLOGY SCHEMATIC:

PLACE AND ROUTE:

HARDWARE FUSING

RESULT:

Thus, the Hardware fusing and testing of 4-Bit counter was implemented in Spartan 3E FPGA trainer kit using Xilinx project navigator.

AIM:

To analyze area, power and delay for Counter and PRBS generator in FPGA Spartan 3E Trainer kit using Xilinx project navigator.

APPARATUS REQUIRED:

S.No	Nameofthe equipment/ software	Quantity
1.	PC with Windows	1
2.	XilinxProject navigator	1

PROCEDURE:

- 1. Start the Xilinx ISE by using Start \rightarrow Program files \rightarrow Xilinx ISE \rightarrow project navigator
- 2. Click File \rightarrow New Project
- 3. Enter the Project Name and select the location then click next
- 4. Select the Device and other category and click next twice and finish.
- 5. Click on the symbol of FPGA device and then right click \rightarrow click on new source.
- 6. Select the Verilog Module and give the file name →click next and define ports →click next and finish.
- 7. Writing the Verilog Code in Verilog Editor.
- 8. Run the Check syntax \rightarrow Process window \rightarrow Synthesize \rightarrow double click check syntax. If any errors found then remove the errors with proper syntax & coding.
- 9. Synthesis your design, from the source window select, synthesis/implementation from the window Now double click the Synthesis -XST.
- 10. After Synthesis, Click on the synthesis report to generate the area and delay summary.
- 11. Type the Net list and click save.
- 12. Implement the design by double clicking Implement design in the process window.
- 13. Then double click Generate Programming File, Double click Configure Target Device and click OK.
- 14. Double click Create PROM File in the ISE iMPACT window, Select Storage Target Device as Xilinx Flash PROM and click forward.
- 15. Add storage Device as xcf01s [2 M] and click forward, Type Output File Name and Location and click OK.
- 16. Select the corresponding .bit file and click Open, Click No to Add another Device and Click OK.
- 17. Double click Generate File.
- 18. Double click Boundary Scan and Right click on the window and select Initialize Chain, Now Select the corresponding .mcs file and click open.
- 19. Click OK in the Device Programming Properties window, Download the Program on to the kit by Right clicking on the device icon and select program.
- 20. Verify the output in the target device.

RIPPLE COUNTER:

CODING:

Module ripple counter (A0, A1, A2, A3, Count, Reset) Output A0,A1, A2,A3; Input Count,Reset; ff f0(A0, Count, Reset); ff f1(A1, A0, Reset); ff f2(A2, A1, Reset); ff f3(A3, A2, Reset); end module moduleff (Q, CLK, Reset); output Q; input CLK, Reset; reg Q; always @ (negedge CLK or negedge Reset) if (~Reset) Q=1'b0; else $Q = (\sim Q);$ endmodule

ANALYZE REPORT:

Area analysis:

 Device utilization summary:

 Selected Device: 3s500eft256-4

 Number of Slices:
 3 out of 4656 0%

 Number of Slice Flip Flops:
 4 out of 9312 0%

 Number of 4 input LUTs:
 5 out of 9312 0%

 Number of IOs:
 6

rumber of fos.	0		
Number of bonded IOBs:	6 out of	190	3%
Number of GCLKs:	1 out of	24	4%

Partition Resource Summary:

No Partitions were found in this design.

Power analysis:

Power summary:	I(mA)	P(mW)
Total estimated power consumption:		81
Vccint 1.20V:	26	31
Vccaux 2.50V:	18	45
Vcco25 2.50V:	2	5
Clocks:	0	0
Inputs:	0	0
Logic:	0	0
Outputs:		
Vcco25	0	0
Signals:	0	0
Quiescent Vccint 1.20V:	26	31
Quiescent Vccaux 2.50V:	18	45
Quiescent Vcco25 2.50V:	2	5

Thermal summary:	
Estimated junction temperature:	28C
Ambient temp:	25C
Case temp:	27C
Theta J-A:	31C/W

Delay Analysis:

Timing Summary:

Speed Grade: -4

Minimum period: 2.554ns (Maximum Frequency: 391.543MHz) Minimum input arrival time before clock: No path found Maximum output required time after clock: 4.394ns Maximum combinational path delay: No path found

Timing Detail:

All values displayed in nanoseconds (ns)

Timing constraint: Default period analysis for Clock 'f2/Q' Clock period: 2.470ns (frequency: 404.858MHz) Total number of paths / destination ports: 1 / 1
Delay: 2.470ns (Levels of Logic = 1) Source: f_3/Q (FF) Destination: f_3/Q (FF) Source Clock: f_2/Q falling Destination Clock: f_2/Q falling
Data Path: f3/Q to f3/Q Gate Net Cell:in->out fanout Delay Delay Logical Name (Net Name)
FDC_1:C->Q 2 0.591 0.447 f3/Q (f3/Q) INV:I->O 1 0.704 0.420 f3/Q_not00011_INV_0 (f3/Q_not0001) FDC_1:D 0.308 f3/Q
Total 2.470ns (1.603ns logic, 0.867ns route) (64.9% logic, 35.1% route)
Timing constraint: Default period analysis for Clock 'f1/Q' Clock period: 2.554ns (frequency: 391.543MHz) Total number of paths / destination ports: 1 / 1
Delay: 2.554ns (Levels of Logic = 1) Source: $f2/Q$ (FF) Destination: $f2/Q$ (FF) Source Clock: $f1/Q$ falling Destination Clock: $f1/Q$ falling
Data Path: f2/Q to f2/Q Gate Net Cell:in->out fanout Delay Delay Logical Name (Net Name)
FDC_1:C->Q 3 0.591 0.531 f2/Q (f2/Q) INV:I->O 1 0.704 0.420 f2/Q_not00011_INV_0 (f2/Q_not0001) FDC_1:D 0.308 f2/Q
Total 2.554ns (1.603ns logic, 0.951ns route) (62.8% logic, 37.2% route)
Timing constraint: Default period analysis for Clock 'f0/Q' Clock period: 2.554ns (frequency: 391.543MHz) Total number of paths / destination ports: 1 / 1
Delay: 2.554ns (Levels of Logic = 1) Source: $f1/Q$ (FF) Destination: $f1/Q$ (FF) Source Clock: $f0/Q$ falling Destination Clock: $f0/Q$ falling
Data Path: f1/Q to f1/Q Gate Net Cell:in->out fanout Delay Delay Logical Name (Net Name)
FDC_1:C->Q 3 0.591 0.531 f1/Q (f1/Q) INV:I->O 1 0.704 0.420 f1/Q_not00011_INV_0 (f1/Q_not0001) FDC_1:D 0.308 f1/Q
Total 2.554ns (1.603ns logic, 0.951ns route) (62.8% logic, 37.2% route)

Timing constraint: Default period analysis for Clock 'Cout' Clock period: 2.554ns (frequency: 391.543MHz) Total number of paths / destination ports: 1 / 1 -----2.554ns (Levels of Logic = 1) Delay: Source: f0/Q (FF) Destination: f0/Q (FF) Source Clock: Cout falling Destination Clock: Cout falling Data Path: f0/Q to f0/Q Gate Net Cell:in->out fanout Delay Delay Logical Name (Net Name) ----- -----
 FDC_1:C->Q
 3
 0.591
 0.531
 f0/Q (f0/Q)

 INV:I->O
 1
 0.704
 0.420
 f0/Q_not00011_INV_0 (f0/Q_not0001)

 FDC_1:D
 0.308
 f0/Q
 _____ 2.554ns (1.603ns logic, 0.951ns route) Total (62.8% logic, 37.2% route) _____ Timing constraint: Default OFFSET OUT AFTER for Clock 'Cout' Total number of paths / destination ports: 1 / 1 _____ Offset: 4.394ns (Levels of Logic = 1) Source: f0/Q (FF) Destination: A0 (PAD) Source Clock: Cout falling Data Path: f0/Q to A0 Gate Net Cell:in->out fanout Delay Delay Logical Name (Net Name) ----- -----
 FDC_1:C->Q
 3
 0.591
 0.531
 f0/Q (f0/Q)

 OBUF:I->O
 3.272
 A0_OBUF (A0)
 -----Total 4.394ns (3.863ns logic, 0.531ns route) (87.9% logic, 12.1% route) _____ Timing constraint: Default OFFSET OUT AFTER for Clock 'f0/Q' Total number of paths / destination ports: 1 / 1 -----Offset: 4.394ns (Levels of Logic = 1) Source: f1/Q (FF) Destination: A1 (PAD) Source Clock: f0/Q falling Data Path: f1/Q to A1 Gate Net Cell:in->out fanout Delay Delay Logical Name (Net Name) _____
 FDC_1:C->Q
 3
 0.591
 0.531
 f1/Q (f1/Q)

 OBUF:I->O
 3.272
 A1_OBUF (A1)
 _____ Total 4.394ns (3.863ns logic, 0.531ns route) (87.9% logic, 12.1% route) ______

Timing constraint: Default OFFSET OUT AFTER for Clock 'f1/Q' Total number of paths / destination ports: 1 / 1 -----Dffset:4.394ns (Levels of Logic = 1)Source:f2/Q (FF) Offset: Destination: A2 (PAD) Source Clock: f1/Q falling Data Path: f2/Q to A2 Gate Net Cell:in->out fanout Delay Delay Logical Name (Net Name) ----- -----
 FDC_1:C->Q
 3
 0.591
 0.531
 f2/Q (f2/Q)

 OBUF:I->O
 3.272
 A2_OBUF (A2)
 _____ Total 4.394ns (3.863ns logic, 0.531ns route) (87.9% logic, 12.1% route) _____ Timing constraint: Default OFFSET OUT AFTER for Clock 'f2/Q' Total number of paths / destination ports: 1 / 1 _____ Offset: 4.310ns (Levels of Logic = 1) f3/Q (FF) Source: Destination: A3 (PAD) Source Clock: f2/Q falling Data Path: f3/Q to A3 Gate Net Cell:in->out fanout Delay Delay Logical Name (Net Name) ----- -----
 FDC_1:C->Q
 2
 0.591
 0.447
 f3/Q (f3/Q)

 OBUF:I->O
 3.272
 A3_OBUF (A3)
 _____ Total 4.310ns (3.863ns logic, 0.447ns route) (89.6% logic, 10.4% route) _____

CPU: 3.91 / 4.03 s | Elapsed: 4.00 / 4.00 s

PRBS GENERATOR:

CODING:

module prbs1 (rand, clk, reset); inputclk, reset; output rand; wire rand; reg [3:0] temp; always @ (posedge reset) begin temp<= 4'hf; end always @ (posedgeclk) begin if (~reset) begin temp <= {temp[0]^temp[1],temp[3],temp[2],temp[1]}; end assign rand = temp[0]; endmodule

RTL SCEMATIC:

TECHNOLOGY SCHEMATIC:

rand

REPORT:

Area Analysis:

Device utilization summary:

Selected Device: 3s500eft256-4

Number of Slices:	0 out of	4656	0%
Number of IOs:	3		
Number of bonded IOBs:	1 out of	190	0%

Partition Resource Summary:

No Partitions were found in this design.

Power Analysis:

Power summary:	I(mA)	P(mW)
Total estimated power consumption:		81
Vccint 1.20V:	26	31
Vccaux 2.50V:	18	45
Vcco25 2.50V:	2	5
Inputs:	0	0
Outputs:		
Vcco25	0	0
Signals:	0	0
Quiescent Vccint 1.20V:	26	31
Quiescent Vccaux 2.50V:	18	45
Quiescent Vcco25 2.50V:	2	5

Thermal summary:	
Estimated junction temperature:	28C
Ambient temp:	25C
Case temp:	27C
Theta J-A:	31C/W

Delay Analysis:

TIMING REPORT

NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE. FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE TRACE REPORT GENERATED AFTER PLACE-and-ROUTE.

Clock Information:

No clock signals found in this design

Asynchronous Control Signals Information:

No asynchronous control signals found in this design

Timing Summary:

Speed Grade: -4

Minimum period: No path found Minimum input arrival time before clock: No path found Maximum output required time after clock: No path found Maximum combinational path delay: No path found

Timing Detail:

All values displayed in nanoseconds (ns)

CPU: 3.84 / 4.19 s | Elapsed: 4.00 / 4.00 s

RESULT:

Thus, area, power and delay for Counter and PRBS generator was analyzed in FPGA Spartan 3E Trainer kit using Xilinx project navigator.

Invoke PLL to generate Real Time Clock

AIM:

To invoke the FPGA Spartan 3E PLL to generate Real time Clock kit using Xilinx project navigator.

APPARATUS REQUIRED:

S.No	Nameofthe equipment/ software	Quantity
1.	PC with Windows	1
2.	XilinxProject navigator	1

PROCEDURE:

- 1. Start the Xilinx ISE by using Start \rightarrow Program files \rightarrow Xilinx ISE \rightarrow project navigator
- 2. Click File \rightarrow New Project
- 3. Enter the Project Name and select the location then click next
- 4. Select the Device and other category and click next twice and finish.
- 5. Click on the symbol of FPGA device and then right click \rightarrow click on new source.
- 6. Select the Verilog Module and give the file name →click next and define ports →click next and finish.
- 7. Writing the Verilog Code in Verilog Editor.
- 8. Run the Check syntax \rightarrow Process window \rightarrow Synthesize \rightarrow double click check syntax. If any errors found then remove the errors with proper syntax & coding.
- 9. Synthesis your design, from the source window select, synthesis/implementation from the window Now double click the Synthesis -XST.
- 10. After Synthesis, Click on the symbol of FPGA device and Right click and select New Source, Select Implementation Constraints File and type file name and click next.
- 11. Type the Net list and click save.
- 12. Implement the design by double clicking Implement design in the process window.
- 13. Then double click Generate Programming File, Double click Configure Target Device and click OK.
- 14. Double click Create PROM File in the ISE iMPACT window, Select Storage Target Device as Xilinx Flash PROM and click forward.
- 15. Add storage Device as xcf01s [2 M] and click forward, Type Output File Name and Location and click OK.
- 16. Select the corresponding .bit file and click Open, Click No to Add Another Device and Click OK.
- 17. Double click Generate File.
- 18. Double click Boundary Scan and Right click on the window and select Initialize Chain, Now Select the corresponding .mcs file and click open.
- 19. Click OK in the Device Programming Properties window, Download the Program on to the kit by Right clicking on the device icon and select program.
- 20. Verify the output in the target device.

FPGA Connections to Seven-Segment Display

SEGMENT	FPGA PIN
А	P8
В	P10
С	P9
D	P6
Е	P4
F	P5
G	P3
DP	P11

CLOCK SOURCE

Spartan3E FPGA works in different Clock frequencies

Clock Input	FPGA PIN
CLK	A8
RST	J6

Digit Enable Signals

Display	DISP 1	DISP 2	DISP 3	DISP 4	DISP 5	DISP 6
FPGA PIN	P1	P2	P7	R4	R11	N14

PLL OSCILLATOR SETTINGS

For PLL, ICS525-01 or ICS525-02 is used. Select the clock settings as per the PLL in the On board 0 = Shorted

1 = Open

For any other CLK frequency in between 1MHz to 100MHz use the following formula.

CLK frequency = Input frequency
$$*2 \frac{(VDW + 8)}{(RDW + 2)(OD)}$$

Where,

Reference Divider Word (RDW) = 1 to 127 (0 is not permitted) VCO Divider Word (VDW) = 4 to 511 (0, 1, 2, 3 are not permitted) Output Divider (OD) = values below

CODING:

System Clock = 20MHz Verilog Program // System clock Frequency 20MHz // MODE Functions // 00 HOURS // 01 Minutes // 10 Seconds // 11 Timer ON

module timer(clk, rst, mode, set, sl, atoh); inputclk; // System Clock inputrst; // Reset(micro switch) input [1:0] mode; // Mode Selection(switch 1 & switch 2) input [7:0] set; // Set Value(switch 4 to switch 11) output [5:0] sl; // Segment Selection output [7:0] atoh; // Segment Display Control Data reg [5:0] sl; reg [7:0] atoh; reg [26:0] sig2; reg [19:1] sig3; reg [7:0] ssdigit1; reg [7:0] ssdigit2; reg [7:0] ssdigit3; reg [7:0] ssdigit4; reg [7:0] ssdigit5; reg [7:0] ssdigit6; reg [3:0] digit1; reg [3:0] digit2; reg [3:0] digit3; reg [3:0] digit4; reg [3:0] digit5; reg [3:0] digit6; always @ (posedgeclk or negedgerst) begin if (rst == 1'b0) begin sig2 = 0;sig3 = 0;digit1 = 0; digit2 = 0; digit3 = 0; digit4 = 0; digit5 = 0; digit6 = 0; end

```
else begin
if (mode == 2'b00) begin // Hours
if (set[7:4] <= 4'b0001) begin
digit1 = set[7:4];
if (set[3:0] <= 4'b1001)
digit2 = set[3:0];
else
digit2 = 0;
end
else if (set[7:4] == 4'b0010) begin
if (set[3:0] <= 4'b0011) begin
digit1 = set[7:4];
digit2 = set[3:0];
end
else begin
digit1 = 0;
digit2 = 0;
end
end
else begin
digit1 = 0;
digit2 = 0;
end
end
else if (mode == 2'b01) begin // Minutes
if (set[7:4] <= 4'b0101) begin
digit3 = set[7:4];
if (set[3:0] <= 4'b1001)
digit4 = set[3:0];
else
digit4 = 0;
end
else begin
digit3 = 0;
digit4 = 0;
end
end
else if (mode == 2'b10) begin // Seconds
if (set[7:4] <= 4'b0101) begin
digit5 = set[7:4];
if (set[3:0] \le 4'b1001)
digit6 = set[3:0];
else
digit6 = 0;
end
else begin
digit5 = 0;
digit6 = 0;
end
end
```

```
else begin
sig2 = sig2 + 1;
case (sig2[24:23]) //RTC Function
2'b00 : begin
digit6 = digit6 + 1;
if (digit6 > 4'b1001) begin
digit6 = 4'b0000;
digit5 = digit5 + 1;
if (digit5 > 4'b0101) begin
digit5 = 4'b0000;
digit4 = digit4 + 1;
if (digit4 > 4'b1001) begin
digit4 = 4'b0000;
digit3 = \text{digit}3 + 1;
if (digit3 > 4'b0101) begin
digit3 = 4'b0000;
digit2 = digit2 + 1;
if (digit 2 > 4'b1001) begin
digit2 = 4'b0000;
digit1 = digit1 + 1;
end
if ((digit1 >= 4'b0010) & (digit2 >= 4'b0100))
begin
digit1 = 4'b0000;
digit2 = 4'b0000;
end
end
end
end
end
sig2[24:23] = 2'b01;
end
2'b11 : begin
if (sig2[22:19] == 4'b1001)
sig2 = 0;
end
default : begin
end
endcase
end
```

```
Display Settings
sig3 = sig3 + 1;
case (sig3[17:15])
3'b000 : begin
sl = 6'b111110;
case (digit1)
4'b0000 : ssdigit1 = 8'b00111111;
4'b0001 : ssdigit1 = 8'b00000110;
4'b0010 : ssdigit1 = 8'b01011011;
default : ssdigit1 = 8'b0000000;
endcase
atoh = ssdigit1;
end
3'b001 : begin
sl = 6'b111101;
case (digit2)
4'b0000 : ssdigit2 = 8'b00111111;
4'b0001 : ssdigit2 = 8'b00000110;
4'b0010 : ssdigit2 = 8'b01011011;
4'b0011 : ssdigit2 = 8'b01001111;
4'b0100 : ssdigit2 = 8'b01100110;
4'b0101 : ssdigit2 = 8'b01101101;
4'b0110 : ssdigit2 = 8'b01111101;
4'b0111 : ssdigit2 = 8'b00000111;
4'b1000 : ssdigit2 = 8'b01111111;
4'b1001 : ssdigit2 = 8'b01101111;
default : ssdigit2 = 8'b0000000;
endcase
atoh = ssdigit2;
end
3'b011 : begin
sl = 6'b111011;
case (digit3)
4'b0000 : ssdigit3 = 8'b00111111;
4'b0001 : ssdigit3 = 8'b00000110;
4'b0010 : ssdigit3 = 8'b01011011;
4'b0011 : ssdigit3 = 8'b01001111;
4'b0100 : ssdigit3 = 8'b01100110;
4'b0101 : ssdigit3 = 8'b01101101;
default : ssdigit3 = 8'b00000000
endcase
atoh = ssdigit3;
end
3'b100 : begin
sl = 6'b110111;
case (digit4)
4'b0000: ssdigit4 = 8'b00111111;
4'b0001 : ssdigit4 = 8'b00000110;
4'b0010 : ssdigit4 = 8'b01011011;
```

```
4'b0011 : ssdigit4 = 8'b01001111;
4'b0100 : ssdigit4 = 8'b01100110;
4'b0101 : ssdigit4 = 8'b01101101;
4'b0110 : ssdigit4 = 8'b01111101;
4'b0111 : ssdigit4 = 8'b00000111;
4'b1000 : ssdigit4 = 8'b01111111;
4'b1001 : ssdigit4 = 8'b01101111;
default : ssdigit4 = 8'b00000000;
endcase
atoh = ssdigit4;
end
3'b110 : begin
sl = 6'b101111;
case (digit5)
4'b0000 : ssdigit5 = 8'b00111111;
4'b0001 : ssdigit5 = 8'b00000110;
4'b0010 : ssdigit5 = 8'b01011011;
4'b0011 : ssdigit5 = 8'b01001111;
4'b0100 : ssdigit5 = 8'b01100110;
4'b0101 : ssdigit5 = 8'b01101101;
default : ssdigit5 = 8'b0000000;
endcase
atoh = ssdigit5;
end
3'b111 : begin
sl = 6'b011111;
case (digit6)
4'b0000 : ssdigit6 = 8'b00111111;
4'b0001 : ssdigit6 = 8'b00000110;
4'b0010 : ssdigit6 = 8'b01011011;
4'b0011 : ssdigit6 = 8'b01001111;
4'b0100 : ssdigit6 = 8'b01100110;
4'b0101 : ssdigit6 = 8'b01101101;
4'b0110 : ssdigit6 = 8'b01111101;
4'b0111 : ssdigit6 = 8'b00000111;
4'b1000 : ssdigit6 = 8'b01111111;
4'b1001 : ssdigit6 = 8'b01101111;
default : ssdigit6 = 8'b0000000;
endcase
atoh = ssdigit6;
end
endcase
end
end
endmodule
```

RTL SCHEMATIC

TECHNOLOGY SCHEMATIC

HARDWARE FUSING

Zilinx - ISE - C:\Xilinx91i\rtl\rtl.ise - [Bounda	ry Scan]	_0
🕱 File Edit View Project Source Process Oper	ations Output Debug Window Help	_ 8
] 🗋 🖻 🗊 😓] 🔏 🖬 🏹 🖄 🤅	× [] [] [] [] [] [] [] [] [] [] [] [] []	
OOLXXXX 00	◆ ▶ [三일 三일] ▲ ※ ※ ※ ④ 巡	
	2 12 12 12 14 15 15 15 15 15 15 15 15 15 15 15 15 15	
🕀 🔡 Boundary Scan		
- BDesktop Configuration		
SystemACE	xc3s500e xcf04s	
PROM File Formatter	timer.bit bypass	
📾 Sourc 🦽 Snap 🖺 Librar 🔣 Desig Configuration		
×		
Available Operations are:		
Program		
➡ Verify		
Get Device ID		
Check Idcode		
Read Status Register	Program Succeeded	
	Trogram Succouldu	
<u>]</u>		
Processes Configuration Operations	N Design Summani Utimer v Ditimer nor 🖗 Boundary Scan	
194 M. 1954 125		

RESULT:

Thus, the FPGA Spartan 3E PLL was invoked to generate Real time Clock in kit using Xilinx project navigator.

LT SPICE Procedure for simulationandimplementationofEDA tool-LtSPICE

- Step 1: Open up a blank schematic screen
 - Select "File" Menu and "New Schematic"

LTspice IV - [Draft7.asc]	D LTspice IV - [Brafi7.asc]	C 8 8
<u>File Edit Hierarchy View Simul</u>	K Eile Edit Hjerarchy View Simulate Iools Window Help	- a ×
New Schematic		081249
D New Symbol		
🖨 Open		
🔚 Save		
Save <u>A</u> s		
Close		
A Print		
Print Preview		
e Print Setup		
Print Monochrome		
1 3412a.asc		
2 FET model - Gate Charge Validati		
d LTC2820 2 phase acc		
51 TC3728FETDarasities ase		
61TC3728FETParasitics asc		
7 transformer.asc		

Step 2: Add the passives and grounds

 Using the toolbar, select Resistor, Capacitor and Ground. Place these symbols on the schematic as shown below. Use Ctrl+R to rotate before placement.

Step 3: Add the voltage source

 Select "Edit" Menu and "Component". From the component window, start typing "voltage" in the dialog box, and click "OK"

Step 4: Wire up the circuit

Using the toolbar, select Wire

Step 4: Wire up the circuit (cont.)

Hint: Press the ESC key at any time to clean up the schematic

Step 5: Add net labels

Using the toolbar, select Label Net. Label the input/output nodes as shown below

Step 6a: Component values

Right-Click on each component symbol to change its value as shown below

Step 6b: Source parameters

 Right-Click on the voltage source and enter the parameters shown below under the "Advanced" tab.

Step 6b: Source parameters

 Right-Click on the voltage source and enter the parameters shown below under the "Advanced" tab.

Functions				DC Value
🛅 (none)			DC value:	
PULSE(V1 V2 T dela	y Trise Tfall Ton P	eriod Noy	vcles)	Make this information visible on schematic.
SINE/Voffset Vamp Freg Td Theta Phi Noucles)				
EXP(V1 V2 Td1 Tau	1 Td2 Tau2			Small signal AC analysis(.AC)
SFFM(Vofi Vamp Fc	ar MDI Feig)			AC Amplitude:
PWL(1 v1 t2 v2)				AC Phase:
PWL FILE:			Biowse	Make this information visible on schematic: 💹
				Parasitic Properties Series Resistance(O)
	Vinitial[V]:	0		Parallal Cranoitaneo(E):
	Von[V]:	5		Faraner Capacitance (r.).
	T delay(s):	0		Mace this monitation visible on schemadic
	Trise[s]:	1u		
	Tial(s):	1u		
	Ton[s]:	10m		
Tperiod[s]:		20m		
	Noycles:	3		
Î	Additional PW	L Points	1	
Make this	information visible	on scher	natio:	Canad CK

• DC Sweep

• Run the Simulation for Transient Response

- Add pane to output
- Right click -> add new pane

- Viewing Differential Voltage Waveforms
- Left-Click on one node and drag the mouse to another node
- Red voltage probe at the first node
- Black probe on the second

TRANSISTOR MODELS

* Long channel models from CMOS Circuit Design, Layout, and Simulation, * Level=3 models VDD=5V, see CMOSedu.com

*

.MODEL N_1u NMOS LEVEL = 3

+ TOX = 200E-10NSUB = 1E17GAMMA = 0.5VTO = 0.8+ PHI = 0.7DELTA = 3.0+ UO = 650ETA = 3.0E-6 THETA = 0.1+ KP = 120E-6VMAX = 1E5KAPPA = 0.3+ RSH = 0NFS = 1E12TPG = 1+ XJ= 500E-9LD = 100E-9+ CGDO = 200E-12CGSO = 200E-12CGBO = 1E-10MJ = 0.5 + CJ = 400E-6PB = 1 + CJSW = 300E-12MJSW = 0.5

*

.MODEL P_1u PMOS LEVEL = 3 + TOX = 200E-10NSUB = 1E17GAMMA = 0.6VTO = -0.9+ PHI = 0.7DELTA = 0.1+ UO = 250ETA = 0THETA = 0.1+ KP = 40E-6VMAX = 5E4KAPPA = 1+ RSH = 0NFS = 1E12TPG = -1LD = 100E-9 + XJ= 500E-9CGSO = 200E-12+ CGDO = 200E-12CGBO = 1E-10+ CJ = 400E-6PB = 1 MJ = 0.5MJSW = 0.5+ CJSW = 300E-12

*

*

* Short channel models from CMOS Circuit Design, Layout, and Simulation,

* 50nm BSIM4 models VDD=1V, see CMOSedu.com

*

.model N 50n nmos level = 54+binunit = 1paramchk = 1mobmod = 0igbmod = 1+capmod = 2igcmod = 1geomod = 0+diomod = 1rdsmod = 0rbodymod = 1rgatemod = 1acnqsmod=0+permod = 1trnqsmod=0+tnom = 27toxe = 1.4e-009toxp = 7e-010toxm = 1.4e-009+epsrox = 3.9wint = 5e-009lint = 1.2e-008= 1 +11= 0wl = 0lln wln = 1= 0+1w= 0ww lwn = 1 wwn = 1xpart = 0toxref = 1.4e-009+lwl = 0wwl = 0+vth0 = 0.22k1 = 0.35k2 = 0.05k3 = 0= 0= 2.5e-006dvt0 = 2.8dvt1 = 0.52+k3bw0 dvt1w = 0+dvt2 = -0.032dvt0w = 0dvt2w = 0+dsub = 2minv = 0.05voffl = 0dvtp0 = 1e-007+dvtp1 = 0.05lpe0 = 5.75e-008 lpeb = 2.3e-010= 2e-008xj ndep = 2.8e+018phin = 0+ngate = 5e+020nsd = 1e + 020+cdsc = 0.0002cdscb = 0cdscd = 0cit = 0+voff = -0.15nfactor = 1.2etab = 0eta0 = 0.15+vfb = -0.55u0 = 0.032= 1.6e-010ub = 1.1e-017ua = -3e-011vsat = 1.1e + 005= 2 = 1e-020+uca0 ags a2 = -1e-020b1 +a1= 0= 1b0 = 0pclm = 0.18+keta = 0.04 = 0dwg = 0dwb +pdiblc1 = 0.028pdiblc2 = 0.022pdiblcb = -0.005drout = 0.45+pvag = 1e-020delta = 0.01 $pscbe1 = 8.14e+008 \quad pscbe2 = 1e-007$ +fprout = 0.2pdits = 0.2pditsd = 0.23pdits1 = 2.3e + 006+rsh = 3rdsw = 150= 150rdw = 150rsw +rdswmin = 0rswmin = 0rdwmin = 0prwg = 0+prwb = 6.8e-011alpha0 = 0.074alpha1 = 0.005wr = 1 +beta0 = 30bgidl = 2.1e+009cgidl = 0.0002 agidl = 0.0002+egidl = 0.8bigbacc = 0.0028+aigbacc = 0.012cigbacc = 0.002+nigbacc = 1aigbinv = 0.014bigbinv = 0.004cigbinv = 0.004nigbinv = 3+eigbinv = 1.1aigc = 0.017bigc = 0.0028aigsd = 0.017bigsd = 0.0028+cigc = 0.002cigsd = 0.002+nigc = 1poxedge = 1pigcd = 1ntox = 1+xrcrg1 = 12 xrcrg2 = 5

+cgso = 6.238e-010 cgdo = 6.238e-010 cgbo = 2.56e-011 cgdl = 2.495e-10+cgsl = 2.495e-10 ckappas = 0.02 ckappad = 0.02acde = 1+moin = 15noff = 0.9voffcv = 0.02= -0.21kt11 = 0.0kt2 = -0.042ute = -1.5+kt1ub1 = -3.5e-019prt = 0+ua1= 1e-009uc1 = 0= 53000+at +fnoimod = 1tnoimod = 0= 0.0001jsws = 1e-011jswgs = 1e-010+jss njs = 1 +ijthsfwd = 0.01ijthsrev= 0.001 bvs = 10xjbvs = 1+isd = 0.0001jswgd = 1e-010njd = 1iswd = 1e-011+ijthdfwd=0.01ijthdrev= 0.001 bvd = 10xjbvd = 1+pbs = 1mjs = 0.5 $c_{js} = 0.0005$ pbsws = 1misws = 0.33cjswgs = 5e-010+cjsws = 5e-010pbswgs = 1pbd = 1+mjswgs = 0.33cjd = 0.0005mjd = 0.5+pbswd = 1 $c_{jswd} = 5e-010$ mjswd = 0.33pbswgd = 1tcj = 0.001+cjswgd = 5e-010mjswgd = 0.33tpb = 0.005+tpbsw = 0.005tcjsw = 0.001tpbswg = 0.005tcjswg = 0.001xtid = 3+xtis = 3dmdg = 0e-006+dmcg = 0e-006dmci = 0e-006dmcgt = 0e-007= 0e-007+dwj = 0e-008xgw xgl = 0e-008+rshg = 0.4gbmin = 1e-010rbpb = 5rbpd = 15+rbps = 15rbdb = 15rbsb = 15ngcon = 1

*

.model P_50n pmos level = 54 +binunit = 1paramchk = 1mobmod = 0+capmod = 2igcmod = 1igbmod = 1geomod = 0+diomod = 1rdsmod = 0rbodymod=1rgatemod = 1+ permod = 1acngsmod=0trngsmod=0 $toxe = 1.4e-009 \quad toxp = 7e-010$ +tnom = 27toxm = 1.4e-009wint = 5e-009lint = 1.2e-008+epsrox = 3.9+11= 0wl = 0lln = 1wln = 1= 0= 1 +lw = 0ww lwn wwn = 1+lwl = 0wwl = 0xpart = 0toxref = 1.4e-009+vth0 = -0.22k1 = 0.39k2 = 0.05k3 = 0+k3b= 0w0= 2.5e-006dvt0 = 3.9dvt1 = 0.635+dvt2 = -0.032dvt1w = 0dvt0w = 0dvt2w = 0+dsub = 0.7minv = 0.05voffl = 0dvtp0 = 0.5e-008+dvtp1 = 0.051pe0 = 5.75e-008 1peb = 2.3e-010 $x_i = 2e-008$ +ngate = 5e+020ndep = 2.8e + 018nsd = 1e+020phin = 0+cdsc = 0.000258cdscb = 0cdscd = 6.1e-008cit = 0+voff = -0.15nfactor = 2eta0 = 0.15etab = 0= 0.55= 0.0095+vfb u0 = 1.6e-009ub = 8e-018ua = 4.6e-013 vsat = 90000a0 = 1.2ags = 1e-020+uc

= -1e-020b1 +a1= 0a2 = 1b0 = 0+keta = -0.047 dwg = 0dwb = 0pclm = 0.55pdiblc2 = 0.0055+pdiblc1 = 0.03pdiblcb = 3.4e-008drout = 0.56+pvag = 1e-020delta = 0.014pscbe1 = 8.14e+008 pscbe2 = 9.58e-007 +fprout = 0.2pdits = 0.2pditsd = 0.23pditsl = 2.3e + 006= 3 +rsh rdsw = 250rsw = 160 rdw = 160 +rdswmin = 0rswmin = 0prwg = 3.22e-008rdwmin = 0+ prwb = 6.8e-011alpha0 = 0.074alpha1 = 0.005wr = 1 +beta0 = 30bgidl = 2.1e+009cgidl = 0.0002agidl = 0.0002+egidl = 0.8+aigbacc = 0.012bigbacc = 0.0028cigbacc = 0.002+nigbacc = 1aigbinv = 0.014cigbinv = 0.004bigbinv = 0.004+eigbinv = 1.1nigbinv = 3aigc = 0.69bigc = 0.0012+cigc = 0.0008aigsd = 0.0087bigsd = 0.0012cigsd = 0.0008+nigc = 1poxedge = 1pigcd = 1ntox = 1+xrcrg1 = 12 xrcrg2 = 5cgdo = 7.43e-010+cgso = 7.43e-010cgbo = 2.56e-011 cgdl = 1e-014+cgsl = 1e-014ckappad = 0.5ckappas = 0.5acde = 1+moin = 15noff = 0.9voffcv = 0.02= 0 = -0.19kt11 kt2 = -0.052ute = -1.5+kt1= -1e-009prt = 0+ua1ub1 = 2e-018uc1 = 0= 33000+at +fnoimod = 1tnoimod = 0+jss = 0.0001jsws = 1e-011jswgs = 1e-010= 1 njs +ijthsfwd = 0.01ijthsrev= 0.001 bvs = 10 xibvs = 1+isd = 0.0001iswd = 1e-011jswgd = 1e-010nid = 1+ijthdfwd=0.01ijthdrev = 0.001bvd = 10xjbvd = 1 $c_{js} = 0.0005$ pbsws = 1+pbs = 1mjs = 0.5+cjsws = 5e-010misws = 0.33pbswgs = 1cjswgs = 5e-010pbd = 1+mjswgs = 0.33cid = 0.0005mjd = 0.5pbswd = 1cjswd = 5e-010mjswd = 0.33pbswgd = 1+cjswgd = 5e-010mjswgd = 0.33tpb = 0.005tcj = 0.001+tpbsw = 0.005 $t_{cisw} = 0.001$ tpbswg = 0.005tcjswg = 0.001+xtis = 3xtid = 3dmdg = 0e-006+dmcg = 0e-006dmci = 0e-006dmcgt = 0e-007+dwi = 0e-008xgw = 0e-007xgl = 0e-008rshg = 0.4gbmin = 1e-010rbpb = 5rbpd = 15+rbps = 15rbdb = 15rbsb = 15ngcon = 1

ELECTRIC VLSI DESIGN EDA TOOL

Procedure for simulation and implementation of EDA tool-ELECTRIC

Electric		\times
File Edit Cell Export View Window Tools Help		
💩 🖬 🖹 () へ 🖸 🏓 🗮 📑 🖪 🕷 💸 () 🕼 () () () () () () () () () () () () ()		
	- 0	83
Explorer Lavers Components		^
Musc. Cell Image: Second		l
		~
Electric Messages		
Electric's Log file is C/UBers/Sidhartha/Downloads/electric.log.		^
NOTHING SELECTED TECH: mocmos (scale=200.0nm,foundry=MOSIS)		

1. Start Electric: The following window will appear.

- 2. Towards the bottom of the window, Electric Messages Window will be found where different messages can be found throughout any design.
- 3. The background color of the window can change as follows

Window -> Color Schemes -> White Background Colors

4. Let's create a Library

Go to **Explorer** (beside the **Components** view); you will find **LIBRARIES** name as no name

5. File -> Save Library As

Go to the location where design have to be save. (eg: \$PATH/Electric/Designs)

Name the design (library name) eg. design_1.jelib

We would create our schematic and layout under this library

Now you will see design_1.jelib under LIBRARIES name in Explorer

- 6. Go to Preferences by clicking the following button or executing File -> Preferences...
- 7. Then you have to set the following.

Preferences -> Categories -> Technology -> Technology

mocmos Technology -> Metal layers -> 3 Layers

Keep submicron rules and Second Polysilicon Layer checked

Click the Analog checkbox.

Preferences				-		\times
Technology PROJECT Preferences Defaults Startup technology: Iayout technology to use for Schematics: Import PSubstrate process in Layout Technology mocmos Technology Metal layers: 3 Layers Import Submicron rules		Categories General Display Tools Technology • Added Technologies • Technology • Design Rules • Scale • Units • Icon		Technology USER Preferences Schematic primitives: Buffer (buffer/inverter) ^ And (and/nand) Or (or/nor)		
 SCMOS rules (4 metal or less) Deep rules (5 metal or more) 				VHDL for primitive: VHDL for negated primitive:	inverter	
 Second Polysilicon Layer Disallow stacked vias Alternate Active and Poly contact rules Analog 		Export Reset (Only resets Help Cancel	Import Reset All USER Preferences) Apply OK	Rotate layout transistors	in menu	

8. To set the scale go to

File -> Preferences -> Technology -> Scale and set mocmos scale to 300 nm

Scale PROJECT Preferences	Categories
The technology scale converts grid units to real spacing on the	e chip:
bicmos (scale=1000.0 nanometers) bipolar (scale=2000.0 nanometers)	Tools Technology Added Technologies
(mos (scale=2000.0 nanometers)	Technology Design Rules
mocmos (scale=300.0 nanometers)	- • Scale
mocmos-cn (scale=200.0 nanometers) mocmosold (scale=1000.0 nanometers) mocmossub (scale=200.0 nanometers)	• Icon
pcb (scale=127000.0 nanometers) photonics (scale=130.0 nanometers) rcmos (scale=2000.0 nanometers)	
pcb (scale=22000.0 nanometers) photonics (scale=13200.0 nanometers) rcmos (scale=2000.0 nanometers) tft (scale=5000.0 nanometers)	Export Import
pcb (scale=127000.0 nanometers) photonics (scale=130.0 nanometers) rcmos (scale=2000.0 nanometers) tft (scale=5000.0 nanometers)	Export Import Reset Reset All
pcb (scale=127000.0 nanometers) photonics (scale=130.0 nanometers) rcmos (scale=2000.0 nanometers) tft (scale=5000.0 nanometers)	Export Import Reset Reset All (Only resets USER Preferences)
pcb (scale=127000.0 nanometers) photonics (scale=130.0 nanometers) rcmos (scale=2000.0 nanometers) tft (scale=5000.0 nanometers)	Export Import Reset Reset All (Only resets USER Preferences) Help Apply

9. Creating a new cell

Go to cell -> New Cell (or you can press ctrl + N). You will find a window like following.

🔍 New Ce		\times	
Library:	design_1		
Name:	Resistive_divider		
	schematic	\sim	
	icon		
10	layout		
view:	layout.skeleton		
	layout.compensated		
	VHDL		
	Veriloa	*	
Technology:	mocmos	\sim	
	Cancel Make new window	ок	

Press ok.

Now under the **library design_1.jelib** you can find a **schematic cell** named as -------{**sch**} with a **red indicator** as follows.

10. Now Press the **Components**. You will find the schematic components unlike the layout components in the startup window.

Electric						
<u>File Edit Cell Export View W</u> indow <u>T</u> ools <u>H</u> elp						
🚵 🗟 📐 🖑 🔍 🔀 🔎 🗰 1 🗮	👎 🔁 🖹 💥 📽 🗭 🔶 🗭					
😨 design_1:Resistive_divider{sc	h}					
Components Explorer Layers	· · · · · · · · · · · · · · · · · · ·					
schematic ~	• • • • • • • • • • • • • • • • • • •					
	· · · · · · · · · · · · · · · · · · ·					
	· · · · · · · · · · · · · · · · · · ·					
	· · · · · · · · · · · · · · · · · · ·					
FISTMS → DL ·						

- 11. Now we are finished with the setup and ready to fabricate a chip in the C5 process via MOSIS
- 12. Checking of DRC (Design Rule Check)

To check DRC you can execute Tools \rightarrow DRC \rightarrow Check Hierarchically or you can press F5.

Once DRC is checked, you can see result in the message window as follows:

```
Electric Messages

Running DRC with area bit on, extension bit on, Mosis bit
Checking again hierarchy .... (0.012 secs)
Found 3 networks
Checking cell 'Resistive_divider{lay}'
No errors/warnings found
0 errors and 0 warnings found (took 0.386 secs)
```

 Layout vs. Schematic (LVS) in Electric is checked using Network Consistency Checking (NCC)

To check this, execute Tools -> NCC -> Schematic and Layout views of Cell in Current Window. You can run this command being in any design window (schematic / layout).

We found a message like sizes not checked.

For this we have to take care of the following

Go to File -> Preferences -> Categories -> Tools -> NCC -> Check transistor sizes

Once again execute the NCC, now you will find the following message.

🖳 Electric Messages

Hierarchical NCC every cell in the design: cell 'Resistive_divider{sch}' cell 'Resistive_divider{lay}' Comparing: design_l:Resistive_divider{sch} with: design_l:Resistive_divider{lay} exports match, topologies match, sizes match in 0.001 seconds. Summary for all cells: exports match, topologies match, <u>sizes match</u> NCC command completed in: 0.001 seconds.

14. Checking ERC (Well Check)

This process checks the connection of the n-well and p-substrate.

The C5 process used here is an n-well process. The p-type substrate is common to all NMOS devices and should be grounded.

One of the **electrical rule checks** (ERCs) is to verify that the **p-well** (in this case p-substrate) is always connected to **ground**.

Further, in this n-well process, if the design contains only **digital circuits** then the **n**-well should be connected to V_{DD} .

For Well Check execute Tools \rightarrow ERC \rightarrow Check Wells or press W (as we have bounded this key to Well Check).

1	😨 Electric Messages		
	=======================================		
	Checking Wells and Substrates in 'design_1:Resistive_divider{lay}'		
	Geometry collection found 1 well pieces, took 0.003 secs		
	Geometry analysis used 4 threads and took 0.003 secs		
	NetValues propagation took 0.0 secs		
	Checking short circuits in 2 well contacts		
	Additional analysis took 0.005 secs		
	FOUND 2 WELL ERRORS (took 0.012 secs)		
	ERC Well Check found 2 errors, 0 warnings!		
	Type > and < to step through errors, or open the ERRORS view in the explorer		
	ERC Well Check error 1 of 2: N-Well contact 'resnwell@0' not connected to ground		

The reason is as below:

In Digital Design all the N-Wells to be connected to V_{DD} and all the P-Wells to be connected to Ground.

Here we can see For N-Well, Must connect to Power is checked.

But this Resistive_divider is not a digital design. Here the N-Well is used as a resister which is an **anlog design**.

So **uncheck** "Must connect to Power" under "For N-Well". You will find zero Well Check error.

15. Schematic Simulation

Now we would **simulate** the resistive divider circuit which has been built, and would observe the output voltage w.r.t. a particular input voltage.

For this we need to write a **SPICE code** which would give the description of the input voltage and would indicate the type of simulation we want to perform.

Writing SPICE Code

Go to the **Components menu**. Click on the arrowhead in the **Misc box** to add **SPICE code** to the schematic as seen in the figure.

Place the SPICE code in the **schematic** and use Ctrl+I to edit its properties.

Ensure, in the SPICE code property box, that the Multi-line Text box is checked.

Add the code shown in the figure for specifying a **SPICE transient analysis** and an **input voltage source**. The code indicates an input voltage of 1 V DC is applied to the circuit. The analalysis would be a transient one for 1 second.

Press F5 to check the schematic.

16. Simulation of the Schematic

Go to Tools -> Simulation (Spice) -> Write Spice Deck.

The following LTspice window will open.

V Lispice Avii - Ressure_anider.spi	-	\times
<u>File View Plot Settings Simulation Iools W</u> indow <u>H</u> elp		
◙ᄚ◼◚◪◓◨҇҇҇҇҇ҀҀҲҲ҈҈Ѿ҄҄҄҄҄ॾॾॾॏढ़ॿढ़ॵॿऀॖॖॖॵॎऀ॒ड़ऻॸऀड़÷३ҳ⊅ॎ७००сक़क़॒ॺज़		
🗱 Resistive_divider.spi 🖹 Resistive_divider.spi 🏾 Pick Visible Traces		
Resistive_divider.spi		×
	0.95	1.0s
	0100	
🚔 Resistive_divider.spi		×
<pre>Resistive_divider.spi **** SPICE deck for cell Resistive_divider(sch) from library design_1 ****</pre>		2
<pre>Resistive_divider.spi *** SPICE deck for cell Resistive_divider(sch) from library design_1 *** Created on Tue Nov 06, 2018 09:13:34 *** Creater provised on Med New 07, 2018, 11:54:47</pre>		~
<pre>*** SPICE deck for cell Resistive divider(sch) from library design_1 *** Created on Tue Nov 06, 2018 09:13:34 *** Last revised on Wed Nov 07, 2018 11:54:47 *** Written on Wed Nov 07, 2018 13:20:07 by Electric VLSI Design System, version 9.07</pre>		~
<pre>*** SPICE deck for cell Resistive divider(sch) from library design_1 *** Created on Tue Nov 06, 2018 09:13:34 *** Last revised on Wed Nov 07, 2018 11:54:47 *** Written on Wed Nov 07, 2018 13:20:07 by Electric VLSI Design System, version 9.07 *** Layout tech: mocmos, foundry MOSIS</pre>		~
<pre>*** SPICE deck for cell Resistive divider(sch) from library design_1 *** Created on Tue Nov 06, 2018 09:13:34 *** Created on Wed Nov 07, 2018 11:54:47 *** Written on Wed Nov 07, 2018 13:20:07 by Electric VLSI Design System, version 9.07 *** Layout tech: mocmos, foundry MOSIS *** UC SPICE *** , MIN_RESIST 4.0, MIN_CAPAC 0.1FF</pre>		*
<pre> *** SPICE deck for cell Resistive divider(sch) from library design_1 *** Created on Tue Nov 06, 2018 09:13:34 *** Created on Wed Nov 07, 2018 11:54:47 *** Written on Wed Nov 07, 2018 13:20:07 by Electric VLSI Design System, version 9.07 *** Layout tech: mocmos, foundry MOSIS *** UC SPICE *** , MIN_RESIST 4.0, MIN_CAPAC 0.1FF *** TOP LEVEL CELL: Resistive divider(sch)</pre>		*
<pre> *** SPICE deck for cell Resistive divider(sch) from library design_1 *** Created on Tue Nov 06, 2018 09:13:34 *** Created on Wed Nov 07, 2018 11:54:47 *** Written on Wed Nov 07, 2018 13:20:07 by Electric VLSI Design System, version 9.07 *** Layout tech: mocmos, foundry MOSIS *** UC SPICE *** , MIN_RESIST 4.0, MIN_CAPAC 0.1FF *** TOP LEVEL CELL: Resistive_divider(sch) Rresnwell@0 vout vin 10k </pre>		*
<pre> *** SPICE deck for cell Resistive divider(sch) from library design_1 *** Created on Tue Nov 06, 2018 09:13:34 *** Last revised on Wed Nov 07, 2018 11:54:47 *** Written on Wed Nov 07, 2018 13:20:07 by Electric VLSI Design System, version 9.07 *** Layout tech: mocmos, foundry MOSIS *** UC SPICE *** , MIN_RESIST 4.0, MIN_CAPAC 0.1FF *** TOP LEVEL CELL: Resistive_divider(sch) Rresnwell@0 vout vin 10k Rresnwell@1 vout gnd 10k</pre>		~
<pre> *** SPICE deck for cell Resistive divider(sch) from library design_1 *** Created on Tue Nov 06, 2018 09:13:34 *** Created on Wed Nov 07, 2018 11:54:47 *** Written on Wed Nov 07, 2018 13:20:07 by Electric VLSI Design System, version 9.07 *** Layout tech: mocmos, foundry MOSIS *** UC SPICE *** , MIN_RESIST 4.0, MIN_CAPAC 0.1FF *** TOP LEVEL CELL: Resistive_divider(sch) Rresnwell@0 vout vin 10k Rresnwell@1 vout gnd 10k * Spice Code podes in cell cell 'Besistive divider(sch)'</pre>		~
<pre> *** SPICE deck for cell Resistive divider(sch) from library design_1 *** Created on Tue Nov 06, 2018 09:13:34 *** Created on Wed Nov 07, 2018 11:54:47 *** Written on Wed Nov 07, 2018 13:20:07 by Electric VLSI Design System, version 9.07 *** Layout tech: mocmos, foundry MOSIS *** UC SPICE *** , MIN_RESIST 4.0, MIN_CAPAC 0.1FF *** TOP LEVEL CELL: Resistive_divider(sch) Rresnwell@0 vout vin 10k Rresnwell@1 vout gnd 10k * Spice Code nodes in cell cell 'Resistive_divider(sch)' vin vin 0 DC 1</pre>		~
<pre> *** SPICE deck for cell Resistive divider(sch) from library design_1 *** Created on Tue Nov 06, 2018 09:13:34 *** Created on Wed Nov 07, 2018 11:54:47 *** Written on Wed Nov 07, 2018 13:20:07 by Electric VLSI Design System, version 9.07 *** Layout tech: mocmos, foundry MOSIS *** UC SPICE *** , MIN_RESIST 4.0, MIN_CAPAC 0.1FF *** TOP LEVEL CELL: Resistive_divider(sch) Rresnwell@0 vout vin 10k Rresnwell@1 vout gnd 10k * Spice Code nodes in cell cell 'Resistive_divider(sch)' vin vin 0 DC 1 .tran 0 1 </pre>		~
<pre> *** SPICE deck for cell Resistive divider[sch] from library design_1 *** Created on Tue Nov 06, 2018 09:13:34 *** Last revised on Wed Nov 07, 2018 11:54:47 *** Written on Wed Nov 07, 2018 13:20:07 by Electric VLSI Design System, version 9.07 *** Layout tech: mocmos, foundry MOSIS *** UC SPICE *** , MIN_RESIST 4.0, MIN_CAPAC 0.1FF *** TOP LEVEL CELL: Resistive_divider[sch] Rresnwell@0 vout vin 10k Rresnwell@1 vout gnd 10k * Spice Code nodes in cell cell 'Resistive_divider[sch]' vin vin 0 DC 1 .tran 0 1 .END</pre>		X

17. Resistive Divider Layout

Open the layout view of the Resistive_divider cell and then copy/paste (Ctrl+C/Ctrl+V) an **additional resistor**.

Running a **DRC** (pressing F5) on the above layout results in the following **error**.

By pressing > we see that there is **too little space between the N-wells**.

Move the Nodes apart until the layout passes the DRCs. Of-course the error will not appear if you have initially placed both the resistors apart enough, which would satisfy the MOSIS rule for space between N-wells.

Run DRC to check the design is free of error or not.

This layout cell should match the schematic cell. Verify this by running the NCC (aka LVS check).

The following figure shows the Electric Messages for **DRC of layout** and **NCC of both layout and schematic (LVS)**.

18. Layout Simulation

The following figure shows the visible spice code.

Run a DRC, NCC, and a Well Check to ensure that there aren't any errors.

This cell can be simulated following the same steps used for simulating the schematic view above.

Simulate this cell using LTspice now.

The following figure shows the simulation output from LTspice for the Resistive_divider layout.

🗗 LTspice XVII - Resistive_divider.spi	- 🗆 ×			
Eile Edit View Simulate Iools Window Help				
፼፼見兪は太のすうなのの間際に開き起きていたののから、ないのののほど、	la op			
🧱 Resistive_divider.spi 🖺 Resistive_divider.spi				
Resistive_divider.spi				
V(vout) V(vin)				
0.95V- 0.90V- 0.80V- 0.80V- 0.75V- 0.70V- 0.60V- 0.60V- 0.60V- 0.55V-				
0.50V 0.0s 0.1s 0.2s 0.3s 0.4s 0.5s 0.6s 0.7s 0.8s	0.9s 1.0s			
Resistive_divider.spi				
<pre>Resistive_divider.spi</pre>				

* BSIM3 models for AMI Semiconductor's C5 process

*

* Don't forget the .options scale=300nm if using drawn lengths

* and the MOSIS SUBM design rules

*

* 2<Ldrawn<500 10<Wdrawn<10000 Vdd=5V

* Note minimum L is 0.6 um while minimum W is 3 um

* Change to level=49 when using HSPICE or SmartSpice

.MODEL NMOS NMOS	S (LEVEL $= 8$
+VERSION $= 3.1$	TNOM = 27	TOX = 1.39E-8
+XJ = 1.5E-7 N	CH = 1.7E17 V	/TH0 = 0.6696061
+K1 = 0.8351612	K2 = -0.0839158	K3 = 23.1023856
+K3B = -7.6841108	W0 = 1E-8	NLX = 1E-9
+DVT0W = 0	DVT1W = 0	DVT2W = 0
+DVT0 = 2.9047241	DVT1 = 0.430269	D5 DVT2 = -0.134857
+U0 = 458.439679	UA = 1E-13	UB = 1.485499E-18
+UC = 1.629939E-12	1 VSAT = 1.643993	3E5 A0 $= 0.6103537$
+AGS = 0.1194608	B0 = 2.674756E-	6 B1 = 5E-6
+KETA = -2.640681E	E-3 A1 = 8.2195853	E-5 A2 = 0.3564792
+RDSW = 1.387108E	3 PRWG = 0.0299	PP16 PRWB = 0.0363981
+WR = 1 WI	INT = 2.472348E-7	LINT = 3.597605E-8
+XL = 0 XW	V = 0 DWG	= -1.287163E-8
+DWB = 5.306586E-	8 VOFF = 0	NFACTOR = 0.8365585
+CIT = 0 CD	SC = 2.4E-4 CI	DSCD = 0

+CDSCB = 0 ETA0 = 0.0246738 ETAB = -1.406123E-3 +DSUB = 0.2543458 PCLM = 2.5945188 PDIBLC1 = -0.4282336 +PDIBLC2 = 2.311743E-3 PDIBLCB = -0.0272914 DROUT = 0.7283566 +PSCBE1 = 5.598623E8 PSCBE2 = 5.461645E-5 PVAG = 0 +DELTA = 0.01 RSH = 81.8 MOBMOD = 1+PRT = 8.621 UTE = -1 KT1 = -0.2501 +KT1L = -2.58E-9 KT2 = 0 UA1 = 5.4E-10+UB1 = -4.8E-19 UC1 = -7.5E-11 AT = 1E5 +WL = 0 WLN = 1 WW = 0+WWN = 1 WWL = 0 LL = 0+LLN = 1 LW = 0 LWN = 1 $CAPMOD = 2 \qquad XPART = 0.5$ +LWL = 0+CGDO = 2E-10 CGSO = 2E-10 CGBO = 1E-9+CJ = 4.197772E-4 PB = 0.99 MJ = 0.4515044+CJSW = 3.242724E-10 PBSW = 0.1 MJSW = 0.1153991 +CJSWG = 1.64E-10 PBSWG = 0.1 MJSWG = 0.1153991 +CF = 0 PVTH0 = 0.0585501 PRDSW = 133.285505 +PK2 = -0.0299638 WKETA = -0.0248758 LKETA = 1.173187E-3 +AF = 1 KF = 0)

.MODEL PMOS PMOS (LEVEL = 8+VERSION = 3.1TNOM = 27TOX = 1.39E-8+XJ = 1.5E-7NCH = 1.7E17VTH0 = -0.9214347K1 = 0.5553722K2 = 8.763328E-3K3 = 6.3063558+K3B = -0.6487362W0 = 1.280703E-8NLX = 2.593997E-8+DVT0W = 0DVT1W = 0DVT2W = 0+DVT0 = 2.5131165DVT1 = 0.5480536DVT2 = -0.1186489

*

+U0 = 212.0166131 UA = 2.807115E-9 UB = 1E-21+UC = -5.82128E-11 VSAT = 1.713601E5 A0 = 0.8430019 +AGS = 0.1328608 B0 = 7.117912E-7 B1 = 5E-6 KETA = -3.674859E-3 A1 = 4.77502E-5 A2 = 0.3 +RDSW = 2.837206E3 PRWG = -0.0363908 PRWB = -1.016722E-5+WR = 1WINT = 2.838038E-7 LINT = 5.528807E-8+XL = 0 XW = 0 DWG = -1.606385E-8 +DWB = 2.266386E-8 VOFF = -0.0558512 NFACTOR = 0.9342488 +CIT = 0 CDSC = 2.4E-4 CDSCD = 0+CDSCB = 0 ETA0 = 0.3251882 ETAB = -0.0580325DSUB = 1 PCLM = 2.2409567 PDIBLC1 = 0.0411445 +PDIBLC2 = 3.355575E-3 PDIBLCB = -0.0551797 DROUT = 0.2036901 +PSCBE1 = 6.44809E9 PSCBE2 = 6.300848E-10 PVAG = 0 +DELTA = 0.01 RSH = 101.6MOBMOD = 1+PRT = 59.494 UTE = -1 KT1 = -0.2942+KT1L = 1.68E-9 KT2 = 0 UA1 = 4.5E-9+UB1 = -6.3E-18 UC1 = -1E-10 AT = 1E3+WL = 0 WLN = 1 WW = 0LL = 0WWL = 0+WWN = 1+LLN = 1 LW = 0 LWN = 1+LWL = 0 CAPMOD = 2 XPART = 0.5+CGDO = 2.9E-10 CGSO = 2.9E-10 CGBO = 1E-9+CJ = 7.235528E-4 PB = 0.9527355 MJ = 0.4955293+CJSW = 2.692786E-10 PBSW = 0.99 MJSW = 0.2958392 +CJSWG = 6.4E-11 PBSWG = 0.99 MJSWG = 0.2958392PVTH0 = 5.98016E-3 PRDSW = 14.8598424 +CF = 0+PK2 = 3.73981E-3 WKETA = 5.292165E-3 LKETA = -4.205905E-3 AF = 1 KF = 0)

Ring Oscillator

AIM:

To design, analyze and simulate the ring oscillator using LT-SPICE.

APPARATUS REQUIRED:

S.No	Nameofthe equipment/ software	Quantity
1.	PC with Windows	1
2.	LT-SPLICE	1

PROCEDURE:

- 1. Start "LTSpice XVII" (or earlier version)
- 2. Start a new Project under the File -> New Schematic
- 3. Make sure , files are saved in a convenient directory. The root directory (C:\) or Desktop are probably not good choices. I would suggest creating a directory "C:\Circuits" and saving your work there
- 4. Double click on LTspice XVII item \rightarrow Select the file menu \rightarrow double click save button
- 5. Click on component button → click type nmos → click on nmos4 item → select ok
 → click left in screen → press cntl+E for required number of nmos
- 6. Follow step 5 for selecting pmos4 device.
- 7. Click on wire button and give connection in circuit diagram
- 8. Click the ground button and place in screen and give connection using wire.
- 9. Click voltage in component list and place in screen. Give connection using wire.
- 10. Click on spice directive button and type ".include level 3 and 54.txt" then click ok
- 11. Click File menu \rightarrow select save as and select desktop item outline item and select the file name and type the name of file then give ok.
- 12. Click on run button.
- 13. Obtain the Transient analysis of Ring oscillator

Circuit Diagram:

3 stage ring oscillator

3 stage ring oscillator using CMOS

SCHEMATIC:

Calculation:

The frequency of oscillation formula for ring oscillator is

$$f = \frac{1}{2nT}$$

Here T = time delay for single inverter

n = number of inverters in the oscillator

RESULT:

Thus the Ring oscillator is simulated using LT-SPICE.

Differential Amplifier

AIM:

To design, analyze and simulate the Differential Amplifier using LT-SPICE.

APPARATUS REQUIRED:

S.No	Nameofthe equipment/ software	Quantity
1.	PC with Windows	1
2.	LT-SPLICE	1

PROCEDURE:

- 1. Start "LTSpice XVII" (or earlier version)
- 2. Start a new Project under the File -> New Schematic
- 3. Make sure , files are saved in a convenient directory. The root directory (C:\) or Desktop are probably not good choices. I would suggest creating a directory "C:\Circuits" and saving your work there
- 4. Double click on LTspice XVII item \rightarrow Select the file menu \rightarrow double click save button
- Click on component button → click type nmos → click on nmos4 item → select ok
 → click left in screen → press cntl+E for required number of nmos
- 6. Follow step 5 for selecting pmos4 device.
- 7. Connect the Circuit as schematic.
- 8. Click on spice directive button and type ".include BISM4_models.txt" then click ok
- Click File menu → select save as and select desktop item outline item and select the file name and type the name of file then give ok.
- 10. .To Obtain the AC analysis, Click on spice directive button and type ".ac oct 20 7 150" then click ok
- 11. To Obtain the DC analysis, Click on spice directive button and type ".dc V1 -5 5 1m" then click ok
- 12. To Obtain the Transient analysis, Click on spice directive button and type ".tran 4m" then click ok

SCHEMATIC:

Symbol:

Circuit:

AC ANALYSIS:

DC ANALYSIS

Transient Analysis:

Differential Mode Gain:

Common Mode Gain:

Calculation:

$$CMRR = \frac{A_{DM}}{A_{CM}}$$

$$CMRR \ in \ dB = \ 20 \ log \ \frac{A_{DM}}{A_{CM}}$$

 $A_{DM} = Differential Voltage Gain$

$$A_{DM} = \frac{V_{out}}{V1 - V2}$$

V1=5mv V2=1mvVout =

 $A_{CM} = Common mode Voltage Gain$

$$A_{CM} = \frac{V_{out}}{(V1 + V2)/2}$$

V1=5mv V2=5mv Vout =

RESULT:

Thus the Differential Amplifier is simulated and CMRR is determined using LT-SPICE.

AIM:

To design a CMOS inverter using the Schematic entry tool - Electric and verify its functioning.

APPARATUS REQUIRED:

S.No	Nameofthe equipment/ software	Quantity
1.	PC with Windows	1
2.	ELECTRIC-EDA Tool	1

PROCEDURE:

- 1. Start Electric VLSI system Design tool.
- 2. Start a new Project under the File -> New Schematic
- 3. Make sure, files are saved in a convenient directory. Save as filename.jelib under LIBRARIES name in Explorer
- 4. Go to Preferences by clicking the following button or executing File -> Preferences Then set the following.
 - a. Preferences -> Categories -> Technology -> Technology
- 5. Go to cell \rightarrow New Cell \rightarrow Schematic
- 6. Go to **Components**. The schematic components will appear unlike the layout components in the startup window.
- 7. Connect the Circuit as shown in Figure
- 8. To check DRC , execute Tools -> DRC -> Check Hierarchically
- 9. To check NCC, execute Tools -> NCC -> Schematic and Layout views of Cell in Current Window.
- 10. For Well Check execute Tools -> ERC -> Check Wells
- 11. Go to the **Components menu**. Click on the arrowhead in the **Misc box** to add **SPICE code** to the schematic . Place the SPICE code in the **schematic**
- 12. Go to Tools -> Simulation (Spice) -> Write Spice Deck.
- 13. Obtain the output waveform of CMOS Inverter.

SCHEMATIC

Symbol:

SIMULATION OUTPUT:

RESULT

Thus the design & simulation of a CMOS inverter has been carried out using schematic of Electric EDA Tools.

AIM:

To draw the layout of CMOS Inverter using Electric EDA tool and extract the SPICE code.

APPARATUS REQUIRED:

S.No	Nameofthe equipment/ software	Quantity
1.	PC with Windows	1
2.	ELECTRIC-EDA Tool	1

PROCEDURE:

- 1. Start Electric VLSI system Design tool.
- 2. Start a new Project under the File -> New Schematic
- 3. Make sure, files are saved in a convenient directory. Save as filename.jelib under LIBRARIES name in Explorer
- 4. Go to Preferences by clicking the following button or executing File -> Preferences Then set the following.
 - a. Preferences -> Categories -> Technology -> Technology
- 5. Go to cell \rightarrow New Cell \rightarrow Schematic
- 6. Go to **Layers**. The Layer components will appear unlike the schematic components in the components window.
- 7. Connect the Layout as shown in Figure
- 8. To check DRC , execute Tools -> DRC -> Check Hierarchically
- 9. To check NCC, execute Tools -> NCC -> Schematic and Layout views of Cell in Current Window.
- 10. For Well Check execute Tools -> ERC -> Check Wells
- 11. Go to the **Components menu**. Click on the arrowhead in the **Misc box** to add **SPICE code** to the schematic . Place the SPICE code in the **layout**
- 12. Go to Tools -> Simulation (Spice) -> Write Spice Deck.
- 13. Obtain the output waveform of CMOS Inverter.

3D VIEW:

SPICE Code:

```
*** SUBCIRCUIT inverter1_inv FROM CELL inverter1:inv(lay)
.SUBCKT inverter1_inv gnd IN out vdd
Mnmos80 gnd IN out gnd NMOS L=0.4U W=2U AS=3.2P AD=8.2P PS=7.2U PD=19.2U
Mpmos80 vdd IN out vdd PMOS L=0.4U W=2U AS=3.2P AD=8.84P PS=7.2U PD=19.6U
* Spice Code nodes in cell cell 'inverter1; inv(lay)'
vdd vdd 0 DC 5
vin in 0 DC pwl 10n 0 20n 5 50n 5 60n 0
cload out 0 250fF
.measure tran tf trig v(out) val=4.5 fall=1 td=8ns targ v(out) val=0.5 fall=1
.measure tran tf trig v(out) val=0.5 rise=1 td=50ns targ v(out) val=4.5 fall=1
.tran 0 100ns
.include c:\electric\c5_models.txt
.ENDS inverter1_inv
*** TOP LEVEL CELL: inv_sym(lay)
Xinv@0 gnd IN OUT vdd inverter1_inv
* Spice Code nodes in cell cell 'inv sym(lay)'
vdd vdd 0 DC 5
vin in 0 DC pwl 10n 0 20n 5 50n 5 60n 0
cload out 0 250fF
.measure tran tf trig v(out) val=4.5 fall=1 td=8ns targ v(out) val=0.5 fall=1
.measure tran tf trig v(out) val=0.5 rise=1 td=50ns targ v(out) val=4.5 fall=1
.tran 0 100ns
.include c:\electric\c5 models.txt
. END
```

SIMULATION OUTPUT:

RESULT:

Thus the layout of CMOS Inverter was verified through Electric EDA tool

AIM:

To design placement and routing, and post placement androuting parameters and observe logical effort for CMOS Inverter using Electric EDA tools.

APPARATUS REQUIRED:

S.No	Nameofthe equipment/ software	Quantity
1.	PC with Windows	1
2.	ELECTRIC-EDA Tool	1

PROCEDURE:

- 1. Start Electric VLSI system Design tool.
- 2. Start a new Project under the File -> New Schematic
- 3. Make sure, files are saved in a convenient directory. Save as filename.jelib under LIBRARIES name in Explorer
- 4. Go to Preferences by clicking the following button or executing File -> Preferences Then set the following.
 - a. Preferences -> Categories -> Technology -> Technology
- 5. Go to cell \rightarrow New Cell \rightarrow Schematic
- 6. Go to **Components**. The schematic components will appear unlike the layout components in the startup window.
- 7. Connect the Circuit as shown in Figure
- 8. To check DRC , execute Tools -> DRC -> Check Hierarchically
- 9. To check NCC, execute Tools -> NCC -> Schematic and Layout views of Cell in Current Window.
- 10. For Well Check execute Tools -> ERC -> Check Wells
- 11. Go to the **Components menu**. Click on the arrowhead in the **Misc box** to add **SPICE code** to the schematic . Place the SPICE code in the **schematic**
- 12. Go to Tools -> Simulation (Spice) -> Write Spice Deck.
- 13. Go to Tools \rightarrow Placement \rightarrow FloorPlanning to obtain place and route of Inerter
- 14. Go to Tools \rightarrow Logic effort \rightarrow Logic Effort libraries to obtain logic effort of Inverter.

Floor Planning:

Place and Route:

Report:

annumper.

RC MODEL:

LOGIC EFFORT:

RESULT:

Thus the post placement androuting parameters and logical effort of CMOS Inverter are observed using Electric EDA tools.
AIM:

To draw the layout of CMOS NAND using Electric EDA tool and extract the SPICE code.

APPARATUS REQUIRED:

S.No	S.No Nameofthe equipment/ software	
1.	PC with Windows	1
2.	ELECTRIC-EDA Tool	1

PROCEDURE:

- 1. Start Electric VLSI system Design tool.
- 2. Start a new Project under the File -> New Schematic
- 3. Make sure, files are saved in a convenient directory. Save as filename.jelib under LIBRARIES name in Explorer
- 4. Go to Preferences by clicking the following button or executing File -> Preferences Then set the following.
 - a. Preferences -> Categories -> Technology -> Technology
- 5. Go to cell \rightarrow New Cell \rightarrow Schematic
- 6. Go to **Layers**. The Layer components will appear unlike the schematic components in the components window.
- 7. Connect the Layout as shown in Figure
- 8. To check DRC , execute Tools -> DRC -> Check Hierarchically
- 9. To check NCC, execute Tools -> NCC -> Schematic and Layout views of Cell in Current Window.
- 10. For Well Check execute Tools -> ERC -> Check Wells
- 11. Go to the **Components menu**. Click on the arrowhead in the **Misc box** to add **SPICE code** to the schematic . Place the SPICE code in the **layout**
- 12. Go to Tools -> Simulation (Spice) -> Write Spice Deck.
- 13. Obtain the output waveform of CMOS NAND.

SCEMATIC:

SYMBOL:

LAYOUT:

3D VIEW:

Simulation Output:

RESULT:

Thus the layout of CMOS NAND was verified through Electric EDA tool

AIM:

To study the given circuit and perform static timing analysisusing Synopsys - PrimeTime STA tools.

APPARATUS REQUIRED:

S.No	Nameofthe equipment/ software	Quantity
1.	PC with Windows	1
2.	Synopsys -PrimeTime STA tool	1

PROCEDURE:

Invoke PrimeTime STA tool

To invoke PrimeTime, choose either options **pt_shell**(command mode) **primetime&**(GUI mode)

Command mode is preferred because:

a. The command mode helps you to keep a record of what you have done.

b. The command mode runs more efficiently than GUI mode.

c. The command mode helps you to lookup the manual/reference quickly.

In spite of the above advantages, command mode sometimes is not as good as GUImode in terms of debugging the schematic problem.

Start Operating PrimeTime STA tool

STA Environment Setting for TSMC 0.13um Technology:

1. Set search path (*If it has not been set up yet*)

setsearch_path ''./home/raid2_2/course/cvsd/CBDK_IC_Contest/CIC/SynopsysDC/db''

2. Set link library

setlink_path ''* typical.dbfast.dbslow.db''

8 0	-/Desktop/synopsys_example/DesignCompiler/dc
hell	<pre>~/Desktop/synopsys_example/DesignCompiler/dc\$ pt_s</pre>
Version J-2014. Copyright A	PrimeTime (R) 12-SP2 for RHEL64 Feb 26, 2015 (c) 1988-2015 Synopsys, Inc. LL RIGHTS RESERVED
This program is proprietar and may be used and disclo controlling such use and d	y and confidential information of Synopsys, Inc. sed only as authorized in a license agreement isclosure.
pt_shell> set lin link_allow_design_mismatch link_create_black_boxes link_force_case pt_shell> set link_library ref/ results/ pt_shell> set link_library saed90nm_typ_ht.db saed90 pt_shell> set link_library	link_library link_path link_path_per_instance {* re {* ref/models/saed nm_typ_ht.lib {* ref/models/saed90nm_typ_ht.db }

Read Gate level Netlist Files and Link design:

1. Type these lines to read in CIC .18 library and your gate level netlist. read_verilog ./Counter_syn.v

2. Link all designslink_designCounterNote, to check the search path and include library, if the errormessage occurred after step 2.

Read Timing and RC information:

Reads leaf cell and net timing and RC information from a file in SPEF Format and uses that information to annotate the current design. **read_parasiticscounter.spef** *Note: The file can be get during synthesis with "write_parasitics" comment.*

Set Operating Conditions:

set_operating_conditions typical -library typical

Set Design Constraints:

This step tells the Dft Compiler how many scan chains are needed. specify the names of scan related pins (scan_enable, scan_in, scan_out).

1. Specify the clock name, period, and clock characteristic create_clock -period 10 -waveform {0 5} [get_portsclk] setdesign_clock [get_clockclk] set_clock_uncertainty 0.5 \$design_clock set_clock_latency -min 1.5 \$design_clock set_clock_latency -max 2.5 \$design_clock set_clock_transition -min 0.25 \$design_clock set_clock_transition -max 0.30 \$design_clock set_propagated_clock \$design_clock

2. Set wire load model set_wire_load_model -name ''ForQA'' -library ''typical''

3. Set wire load mode
set_wire_load_mode top

4. Report report_design report_reference

000	~/Desktop/synops	ys_example/DesignCompiler/dc
clock clock (rise edge)	70.000	70.000
clock network delay (ideal)	0.000	70.000
out_reg[7]/CLK (DFFARX1)	0.000	70.000 r
out_reg[7]/QN (DFFARX1)	0.224	70.224 r
U1/Z (AOBUFX2)	0.129	70.353 r
out_reg[0]/D (DFFARX1)	0.032	70.385 r
data arrival time		70.385
clock clock (rise edge)	190.000	190.000
clock network delay (ideal)	0.000	190.000
clock reconvergence pessimism	0.000	190.000
out_reg[0]/CLK (DFFARX1)		190.000 r
library setup time	-0.161	189.839
data required time		189.839
data required time		189.839
data arrival time		-70.385
••••••	••••••	•••••
slack (MET)		119.454
pt_shell> write_changes -format to 1	ext -output eco	
pt shell> pt shell>		

Timing analysis and report possible problems:

This step checks your scan specification for consistency. Please type the followingcommands to set the input/output delay:

set_input_delay 1.5 [get_portsinputA] -clock \$design_clock
set_input_delay 1.5 [get_portsinputB] -clock \$design_clock
set_input_delay 1.5 [get_ports instruction] -clock \$design_clock
set_output_delay 1.5 [get_ports reset] -clock \$design_clock
set_output_delay 1.5 [get_portsalu_out] -clock \$design_clock
And then check the timing:
check_timing
settrue_delay_prove_true_backtrack_limit 20000
report_timing -true
report_bottleneck

RESULT:

Thus the static timing analysis of the given circuit has been studied.

AIM:

To study the given circuit and perform DfT-Scan chain insertion using Synopsys - TetraMaxtools.

APPARATUS REQUIRED:

S.No	Nameofthe equipment/ software	Quantity
1.	PC with Windows	1
2.	Synopsys - TetraMax tool	1

PROCEDURE:

Invoke DftCompiler

Dft Compiler is actually embedded in the Design Compiler.

To invoke Dft Compiler, choose either options.

dc_shell(command mode) dv&(GUI mode)

Command mode is preferred because:

- a. Command mode helps you to keep a record of what you have done.
- b. Command mode runs more efficiently than GUI mode.
- c. Command mode helps you to lookup the manual/reference quickly.

In spite of the above advantages, command mode sometimes is not asgood as GUI mode in terms of debugging the schematic problem.

NOTE: maybe occurrence of some error message like "Error: current design notdefined." just ignore it for now.

STEP 1: Read Input Files

1. Please check there is no error message when starting the "dc_shell". If there are errors in the windows, please check the .synopsys_dc.setup. Type either one of these lines to read your gate level netlist (The circuit after synthesis).

read_verilogfilename.v read_filefilename.v -format Verilog

- 2. Set the working design to you top design. In this case, set ALU as the working design. current_design ALU
- 3. Resolve the design references and check if there is any errors. Link check_design
- Set the design constraints and check if the designs have any violations. The constraints.tcl is based on the constraints that you used in the synthesis lab. sourceconstraints.tcl report_constraint -all_violators
- To obtain a timing/area/power report of your original design, type (where ALU is your top design)
 report_area>filename.area_rpt

report_timing>filename.timing_rpt report_power>filename.power_rpt

STEP 2: Select scan style

Define the default scan style for the insert_dft command if a scanstyle is not specified with the set_scan_style command. This variable must identify one of the following supported scan styles:multiplexed_flip_flop, clocked_scan, lssd, aux_clock_lssd,combinational, or none. You can skip this step because the defaultis multiplexed_flip_flop.

settest_default_scan_stylemultiplexed_flip_flop

STEP 3: Set ATE configuration and create test protocol

The timing of the test clock is based on the test_default_period,test_default_delay, test_default_strobe, and test_default_strobe_widthvariables.

settest_default_delay 0

settest_default_bidir_delay 0

settest default strobe 40

settest_default_period 100

To create a test protocol for a non-scan design, you can just type

create_test_protocol -infer_asynch -infer_clock

When -infer_asynch is specified, create_test_protocol infersasynchronous set and reset signals in the design, and places them at offstate during scan shifting. When -infer_clock is specified, create_test_protocol infers test clock pins from the design, and pulses them during scan shifting.

STEP 4: Pre-scan Check

Check if there is any design constraint violations before scan insertion. **report_constraint -all_violators** Perform pre-scan test design rule checking.

dft_drc

STEP 5: Scan specification

This step tells the Dft Compiler how many scan chains needed. This allows to specify the names of scan related pins (scan_enable, scan_in,scan_out).

set_scan_configuration -chain_count 1

STEP 6: Scan preview

This step checks your scan specification for consistency. Please type **preview_dft**

STEP 7: scan chain synthesis

Stitch your scan cells into a chain. And do some more optimizations. insert_dft

STEP8: Post-scan check

Check if there is any design constraint violations after scan insertion.

report_constraint -all_violators

Perform post-scan test design rule checking.

dft_drc

Resetting current test mode	Pattern Summary	Report	
Beginning Mapping Optimizations	#internal patterns		0
In mode: Internal_scen Design has scan diains in this mode Design is scan routed Post-DFT DRC enabled	Uncollapsed Stuck Faul	t Summary R	eport
Information: Starting test design rule checking. [TEST-222]	fault class	code	#faults
Loading test protocol basic checks	Detected Receibly detected	DT	2164
basic sequential cell checks checking vector rules	Undetectable	UD	90
checking clock rules checking scan chain rules checking scan compression rules	ATPG untestable Not detected	AU ND	150
checking X-state rules checking tristate rules extracting some details	total faults test coverage		2404 93.52%
saving simulation value info 	Information: The test cov than the rea protocol and	erage above l test cover l test simul:	may be inferior rage with customized ation library.

STEP 9: Reports

Report the scan cells and the scan paths report_scan_path -view existing -chain all >ALU_syn_dft.scan_path report_scan_path -view existing -cell all >ALU_syn_dft.scan_cell

To obtain a timing/area report of your scan_inserted design, type report_timing>ALU_syn_dft.timing_rpt

8	Teltr	aMAX — Synoptyt Ind	áj	
Cie Edit View Gellist Rules Scan Printive C R R R R R R R R R R R R R R R R R R R	pen GSV	ignems guses Constrai Compress Write Pat	nts Loops Bun Analyz	e Rep <u>o</u> rt <u>H</u> elp
18 885 149 35 145 4 37 4 0 oncollapsed stuck fault 5	0/0/0 0/0/0 0/0/0	1 88.85% 1 99.70% 1 100.00%	0.03 0.04 0.04	
fault class	code	⊧faults		
Detected Dossibly detected Undetectable AIPG untestable Not detected	DT DT UD AU ND	1336 0 60 0 0		
total faults test coverage		1396 100.0D%		
Pattern Summary Re	port			
<pre>#Internal patterns #basic_scan patterns</pre>		37 37		
TEST>				
Log History Encis/Warnings				
eady				Euro DRC Test

RESULT:

Thus the DfT-Scan chain insertion of the given circuit has been studied.