

VLSI Design Laboratory

(For

DEPARTMENT OF

SRI CHANDRASEKHARENDRA

(Deemed to be University u/s 3 of
(Accredited
Enathur, Kanchipuram

Design Laboratory

Record

B.E (ECE) – FULL TIME

VI SEMESTER

(For the Academic Year 2021-22)

OF ELECTRONICS & COMMUNICATION
ENGINEERING

CHANDRASEKHARENDRA SARASWATHI VISWA
MAHAVIDYALAYA

(Deemed to be University u/s 3 of UGC Act, 1956)
(Accredited with ‘A’ Grade by NAAC)
Enathur, Kanchipuram – 631561

Design Laboratory

COMMUNICATION

VISWA

BONAFIDE CERTIFICATE

Certified to be the Bonafide Record of the work done by

……………………………………… (Name)… (Reg.No.)

………… (Semester) …………. (Branch) in the VLSI Design

Laboratory during the year 2021-2022.

Place:

Date:

…………………… …………………….

Faculty in-charge Head of the department

Dr. G. Senthil Kumar Prof. V. Swaminathan

==

Submitted for the Practical Examination held on …………...

Register No: ……………….

Internal Examiner External examiner

LIST OF EXPERIMENTS

(a) Study of IC design flow using EDA tools of different vendors
(b) Introduction to JTAG

FPGA Based Experiments:

1. HDL based design entry, Test bench creation and simulation of BCD counters, PRBS

generators, Comparators (min 4-bit) / Bothe multiplier / Carry select adder.

2. Synthesis, Placement and Routing (P&R) and post P&R simulation of the components

simulated in (Expt. No. 1) above

3. Critical paths and static timing analysis results to be identified. Identify and verify

possible conditions under which the blocks will fail to work correctly.

4. Hardware fusing and testing of each of the blocks simulated in (Expt. 1).Use of either

chipscope feature (Xilinx) or the signal tap feature(Altera) is a must.

5. Invoke the PLL and demonstrate the use of the PLL module for clock generation in

FPGAs.

IC Design Experiments:

6. Design and PSPICE simulation of

(a) Simple 5 transistor differential amplifier. Measure gain, BW, output impedance, ICMR, and

CMRR.

(b) Ring Oscillator

7. Layout generation, DRC and LVS Checking, Parasitic Extraction and Resimulation of

CMOS Inverter.

8. Synthesis and Standard cell-based design of a circuit simulated in (Expt. 6-b) above -

Synthesis principles, Logical Effort, Interpreting Scripts, Constraints and Library preparation

and generation, Boolean Optimization, Optimization for Area, Power.

9. For Expt. 6-b above, Floor Planning, Placement and Routing (P&R), Power and Clock

Routing, and post P&R simulation

10. Static Timing analyses procedures and constraints. Critical path considerations.

11. DFT - Scan chain insertion / Clock Tree Synthesis / Stick diagrams

Index

EX.NO

NAMEOF THE EXPERIMENTS

PAGE

NO

SIGN

CYCLE- I
Tools- XILINX ISE 14.1

1 Design Entry and Simulation of Combinational Circuits

2 Place and Route and Post Place & Route Simulation

3 Design and FPGA Implementation of Combinational Circuits

4 Design and FPGA Implementation of Sequential Circuits

5 Analysis of Area, Power and Delay For Sequential Circuits

6 Invoke PLL to generate Real Time Clock

 CYCLE-II
Tools – LT-SPICE and ELECTRIC VLSI System

Design EDA

7 Ring Oscillator

8 Differential Amplifier

9 CMOS Inverter

10 Layout CMOS Inverter

11 CMOS Inverter – Place and Route

12 Layout CMOS NAND Gate

 Study Experiments
Tools- Synopsys

13 Static Timing Analysis

14 DfT-Scan Chain Insertion

Procedure for simulation

XILINX SPARTAN 3E TRAINER KIT

The Spartan-3E Trainer Kit is a demonstration platform intended to become familiar with the new features
and availability of the Spartan-3E FPGA family. This Kit provides a easy
platform for Spartan-3E FPGA designs.

Procedure for simulation and implementation of EDA
using

XILINX SPARTAN 3E TRAINER KIT

3E Trainer Kit is a demonstration platform intended to become familiar with the new features
3E FPGA family. This Kit provides a easy-to-use development and evaluation

3E FPGA designs.

EDA tool

3E Trainer Kit is a demonstration platform intended to become familiar with the new features
use development and evaluation

Slide Switch connections with FPGA - INPUT PIN

SWITCHES FPGA PINS

SW4 T14

SW5 T12

SW6 T9

SW7 T7

SW8 T2

SW9 G12

SW10 H1

SW11 R3

SW12 N11

SW13 N3

SW14 M13

SW15 M7

SW16 M3

SW17 K4

SW18 J12

SW19 J11

OUTPUT PINS

LEDS FPGA PINS

L16 R1

L15 R2

L14 K3

L13 T4

L12 T5

L11 R6

L10 T8

L9 R10

L8 N10

L7 P12

L6 N9

L5 N12

L4 P13

L3 R13

L2 T13

L1 P14

Procedure for simulationandimplementationofXilinxtoolandFPGA

STEP1:STEP1:STEP1:STEP1:

ClickXilinxISE9.1

STEP2:STEP2:STEP2:STEP2:

File->NewprojectandtypetheprojectnameandcheckthetoplevelsourcetypeasHDL

STEP3:Checkthedevicepropertiesandclicknext

STEP4:ClickNewSourceAndSelecttheVerilogModuleandthengivethefilename

STEP5:

Select theInput,Outputportnamesandclickfinish.

STEP6:

Typetheprogramandsaveit

STEP7:CheckthesynthesizeXSTandchecksyntax

STEP8: Select user constraints-> assign package pins, set port numbers and save it then
selectIOBusdelimiterasXSTdefault<>->clickok

STEP9:

Doubleclickimplementdesign and clickgenerateprogrammingfile-
>configuredevice(impact)->finishthenselectbitfile

STEP10:

Rightclickonthexc3s400figure->program-

>filenamethenclickfinishandFinallycheckthefunctionalityinhardware

EXP NO: 1
Date:

Design Entry and Simulation of Combinational Circuits

AIM:
To writeaVerilogcodeforthe 4bit Ripple carry adderand 4 bit Comparatorand simulateit
usingXilinxproject navigator.

APPARATUS REQUIRED:

S.No Nameofthe equipment/ software Quantity

1. PC with Windows 1

2. XilinxProject navigator 1

PROCEDURE:

1. Start theXilinxISE byusing Start �Programfiles � XilinxISE� project
navigator

2. Click File�New Project
3. Enter theProject Name and select the location then click next
4. Select theDevice andothercategoryandclick next twice and finish.
5. Click on the symbolof FPGA device and then right click� click on new source.

6. Select theVerilogModule andgivethe filename�click next and defineports �click next and
finish.

7. Writingthe VerilogCodein VerilogEditor.
8. Run the Check syntax�Process window�synthesize� double click check syntax.If

anyerrorsfound then remove theerrors with proper syntax&coding.
9. Click on the symbolof FPGA device and then right click�click on new source.
10. Select theTestBenchWaveformand give thefilename�selectentityclick next and finish.
11. Select thedesired parameters forsimulatingyourdesign.In thiscasecombinational

circuitand simulation time click finish.
12. Assign all inputsignal usingjustclick ongraphand save file.
13. From the sourceprocesswindow. ClickBehavioral simulationfrom drop-down menu
14. Select thetest benchfile (.tbw) and click processbutton� double clickthe

SimulationBehavioral Model
15. Verify your design inwavewindow byseeingbehavior ofoutputsignal with respect to input

signal

4-Bit Ripple Carry Adder

Block Diagram:

CODING :

moduleripple_carry_adder(a, b, cin, sum, cout);
input [03:0] a;
input [03:0] b;
inputcin;
output [03:0] sum;
outputcout;
wire [2:0]c;
fulladd a1(a[0],b[0],cin, sum[0],c[0]);
fulladd a2(a[1],b[1],c[0],sum[1],c[1]);
fulladd a3(a[2],b[2],c[1],sum[2],c[2]);
fulladd a4(a[3],b[3],c[2],sum[3],cout);
endmodule

modulefulladd(a,b,cin,sum,cout);
inputa,b,cin;
outputsum,cout;
assign sum=(a^b^cin);
assigncout=((a&b)|(b&cin)|(a&cin));
endmodule

RTL SCHEMATIC:

TECHNOLOGY SCHEMATIC:

SIMULATION OUTPUT:

RESULT:

Thus the Verilog code for 4 bit Ripple Carry Adder is simulatedusing Xilinx project navigator.

EXP NO: 2
Date:

Place and Route and Post Place & Route Simulation

AIM:

To synthesis 4- Bit Comparator and then Place& Route and Post Place & Root using Implementation
option available in Xilinx project navigator.

APPARATUS REQUIRED:

S.No Nameofthe equipment/ software Quantity

1. PC with Windows 1

2. XilinxProject navigator 1

Theory:

� Back annotation is the translation of a routed or fitted design to a timing simulation netlist.
� To define the behavior of the FPGA, a hardware description language (HDL) or a schematicdesign

methods are used. Common HDLs are VHDL and Verilog. Then, using an electronicdesign automation
(EDA) tool, a technology-mapped net list is generated.

� The net list can then be fitted to the actual FPGA architecture using a process called placeand-route,
usually performed by the FPGA vendor‟s proprietary place-and-route software.

� The user will validate the map, place and route results via timing analysis, simulation, andother
verification methodologies. Once the design and validation process is complete, thebinary file generated
is used to (re)configure the FPGA.

� In an attempt to reduce the complexity of designing in HDLs, which have been compared tothe
equivalent of assembly

� In a typical design flow, an FPGA application developer will simulate the design at multiplestages
throughout the design process.

� Initially the RTL description in VHDL or Verilog is simulated by creating test benches tosimulate the
system and observe results.

� Then, after the synthesis engine has mapped the design to a net list, the net list is translated toa gate level
description where simulation is repeated to confirm the synthesis proceededwithout errors.

� Finally the design is laid out in the FPGA at which point propagation delays can be added andthe
simulation run again with these values back-annotated onto the net list.

� Place & Route, the process of optimization of logic cells for effective utilization of FPGAarea and the
speed of operation, is used to modify and infer the following:

1. Re-assignment of Pins
2. Re-location of Slices

3. Run time minimization

Procedure:

1. Start the Xilinx ISE by using Start �Program files � Xilinx ISE � project navigator
2. Click File� New Project
3. Enter the Project Name and select the location then click next
4. Select the Device and other category and click next twice and finish.
5. Click on the symbol of FPGA device and then right click� click on new source.
6. Select the Verilog Module and give the file name �click next and define ports �click next and

finish.
7. Writing the Verilog Code in Verilog Editor.
8. Run the Check syntax � Process window� synthesize� double click check syntax. If

any errors found then remove the errors with proper syntax & coding.
9. Synthesis your design, from the source window select, synthesis/implementation from the

window Now double click the Synthesis -XST
10. After Synthesis you assign the Pin Value for your design so, �double click the Assign Package

Pins
11. Enter the Pin value for your input and output signals. if you want see your Pin assignment in

FPGA zoom in Architecture View or Package View
12. Check the Pins in FPGA. Save file as XST Default click ok and close the window
13. Design Implementation begins with the mapping or fitting of a logical design file to a specific

device and is complete when the physical design is successfully routed and a bit stream is
generated. Double Click Implementation Design.

14. After finishing the Implementation, you can view the Implementation report.
15. After implementation you see Design Summary, you get the all details about your design. If you

want edit the place and route double click View/Edit placed design
16. Check where your IOs are placed in FPGA. And zoom to view how Pins are placed in FPGA.

You can see where your pins are placed
17. Just double click View/Edit Routed Design to view interconnection wires and blocks
18. Click the pin to see where its placed in FPGA. And Zoom particular area to see Place and

Routing.
19. If required to change the place of the design, click and trace to another slice. View changed

place and route of the design
20. Double click Back annotated Pin Location. Once back annotation is completed, constraint file is

generated.

4 bit Comparator

Block Diagram:

Truth Table

//declare the Verilog module - The inputs and output signals.
module comparator(
 Data_in_A, //input A
 Data_in_B, //input B
 less, //high when A is less than B
 equal, //high when A is equal to B
 greater //high when A is greater than B
);

 //what are the input ports.
 input [3:0] Data_in_A;
 input [3:0] Data_in_B;
 //What are the output ports.
 output less;
 output equal;
 output greater;
 //Internal variables
 reg less;
 reg equal;
 reg greater;

• //When the inputs and A or B are changed execute this block
 always @(Data_in_A or Data_in_B)
 begin
 if(Data_in_A > Data_in_B) begin //check if A is bigger than B.
 less = 0;
 equal = 0;
 greater = 1; end
 else if(Data_in_A == Data_in_B) begin //Check if A is equal to B
 less = 0;
 equal = 1;
 greater = 0; end
 else begin //Otherwise - check for A less than B.
 less = 1;
 equal = 0;
 greater =0;
 end
 end
endmodule

RTL SCHEMATIC:

TECHNOLOGY SCHEMATIC:

PLACE AND ROUTE:

RESULT:
Thus, the Place and Route and Post Place and Route using Implementation options available in Xilinx
project navigator were synthesized for 4-bit Comparator.

EXP NO: 3
Date:

Design and FPGA Implementation of Combinational
Circuits

AIM:

To design and implement Booth Multiplier and Carry select Adder in FPGA Spartan 3E Trainer
kit using Xilinx project navigator.

APPARATUS REQUIRED:

S.No Nameofthe equipment/ software Quantity

1. PC with Windows 1

2. XilinxProject navigator 1

PROCEDURE:

1. Start the Xilinx ISE by using Start �Program files � Xilinx ISE � project navigator
2. Click File� New Project
3. Enter the Project Name and select the location then click next
4. Select the Device and other category and click next twice and finish.
5. Click on the symbol of FPGA device and then right click� click on new source.
6. Select the Verilog Module and give the file name �click next and define ports �click next and

finish.
7. Writing the Verilog Code in Verilog Editor.
8. Run the Check syntax � Process window� Synthesize� double click check syntax. If

any errors found then remove the errors with proper syntax & coding.
9. Synthesis your design, from the source window select, synthesis/implementation from the

window Now double click the Synthesis -XST.
10. After Synthesis, Click on the symbol of FPGA device and Right click and select New Source,

Select Implementation Constraints File and type file name and click next.
11. Type the Net list and click save.
12. Implement the design by double clicking Implement design in the process window.
13. Then double click Generate Programming File, Double click Configure Target Device and click

OK.
14. Double click Create PROM File in the ISE iMPACT window, Select Storage Target Device as

Xilinx Flash PROM and click forward.
15. Add storage Device as xcf01s [2 M] and click forward, Type Output File Name and Location

and click OK.
16. Select the corresponding .bit file and click Open, Click No to Add Another Device and Click

OK.
17. Double click Generate File.
18. Double click Boundary Scan and Right click on the window and select Initialize Chain, Now

Select the corresponding .mcs file and click open.
19. Click OK in the Device Programming Properties window, Download the Program on to the kit

by Right clicking on the device icon and select program.
20. Verify the output in the target device.

BOOTH ALGORITHM:

CODING:

moduleboothmulti(X, Y, Z);
input signed [3:0] X, Y;
output signed [7:0] Z;
reg signed [7:0] Z;
reg [1:0] temp;
integeri;
reg E1;
reg [3:0] Y1;
always @ (X, Y)
begin
 Z = 8'd0;
 E1 = 1'd0;
for (i = 0; i< 4; i = i + 1)
begin
temp = {X[i], E1};
 Y1 = - Y;
case (temp)
2'd2 : Z [7 : 4] = Z [7 : 4] + Y1;
2'd1 : Z [7 : 4] = Z [7 : 4] + Y;
default : begin end
endcase
 Z = Z >> 1;
Z[7] = Z[6];
 E1 = X[i];
end
if (Y == 4'd8)
begin
 Z = - Z;
end
end
endmodule

RTL SCHEMATIC:

TECHNOLOGY SCHEMATIC:

PLACE AND ROUTE:

HARDWARE FUSING:

CARRY SELECT ADDER:

BLOCK DIAGRAM:

CODING:

modulecarry_select_adder
 (input [3:0] A,B,
inputcin,
output [3:0] S,
outputcout
);

wire [3:0] temp0,temp1,carry0,carry1;

//for carry 0
fulladder fa00(A[0],B[0],1'b0,temp0[0],carry0[0]);
fulladder fa01(A[1],B[1],carry0[0],temp0[1],carry0[1]);
fulladder fa02(A[2],B[2],carry0[1],temp0[2],carry0[2]);
fulladder fa03(A[3],B[3],carry0[2],temp0[3],carry0[3]);

//for carry 1
fulladder fa10(A[0],B[0],1'b1,temp1[0],carry1[0]);
fulladder fa11(A[1],B[1],carry1[0],temp1[1],carry1[1]);
fulladder fa12(A[2],B[2],carry1[1],temp1[2],carry1[2]);
fulladder fa13(A[3],B[3],carry1[2],temp1[3],carry1[3]);

//mux for carry
multiplexer2 mux_carry(carry0[3],carry1[3],cin,cout);
//mux's for sum
multiplexer2 mux_sum0(temp0[0],temp1[0],cin,S[0]);
multiplexer2 mux_sum1(temp0[1],temp1[1],cin,S[1]);
multiplexer2 mux_sum2(temp0[2],temp1[2],cin,S[2]);
multiplexer2 mux_sum3(temp0[3],temp1[3],cin,S[3]);

endmodule

modulefulladder
 (inputa,b,cin,
outputsum,carry
);

assign sum = a ^ b ^ cin;
assign carry = (a & b) | (cin& b) | (a &cin);

endmodule

module multiplexer2
 (input i0,i1,sel,
outputregbitout
);

always@(i0,i1,sel)
begin
if(sel == 0)
bitout = i0;
else
bitout = i1;
end

endmodule

RTL SCHEMATIC:

TECHNOLOGY SCHEMATIC:

PLACE AND ROUTE:

HARDWARE FUSING:

RESULT:

Thus, the Hardware fusing and testing of Booth Multiplier and Carry Select Adder were

implemented in Spartan 3E FPGA trainer kit using Xilinx project navigator.

EXP NO: 4
Date:

Design and FPGA Implementation of Sequential Circuits

AIM:

To design and implement Counter in FPGA Spartan 3E Trainer kit using Xilinx project
navigator.

APPARATUS REQUIRED:

S.No Nameofthe equipment/ software Quantity

1. PC with Windows 1

2. XilinxProject navigator 1

PROCEDURE:

1. Start the Xilinx ISE by using Start �Program files � Xilinx ISE � project navigator
2. Click File� New Project
3. Enter the Project Name and select the location then click next
4. Select the Device and other category and click next twice and finish.
5. Click on the symbol of FPGA device and then right click� click on new source.
6. Select the Verilog Module and give the file name �click next and define ports �click next and

finish.
7. Writing the Verilog Code in Verilog Editor.
8. Run the Check syntax � Process window� Synthesize� double click check syntax. If

any errors found then remove the errors with proper syntax & coding.
9. Synthesis your design, from the source window select, synthesis/implementation from the

window Now double click the Synthesis -XST.
10. After Synthesis, Click on the symbol of FPGA device and Right click and select New Source,

Select Implementation Constraints File and type file name and click next.
11. Type the Net list and click save.
12. Implement the design by double clicking Implement design in the process window.
13. Then double click Generate Programming File, Double click Configure Target Device and click

OK.
14. Double click Create PROM File in the ISE iMPACT window, Select Storage Target Device as

Xilinx Flash PROM and click forward.
15. Add storage Device as xcf01s [2 M] and click forward, Type Output File Name and Location

and click OK.
16. Select the corresponding .bit file and click Open, Click No to Add Another Device and Click

OK.
17. Double click Generate File.
18. Double click Boundary Scan and Right click on the window and select Initialize Chain, Now

Select the corresponding .mcs file and click open.
19. Click OK in the Device Programming Properties window, Download the Program on to the kit

by Right clicking on the device icon and select program.
20. Verify the output in the target device.

CODING:

Module ripple counter (A0, A1, A2, A3, Count, Reset)
Output A0,A1, A2,A3;
Input Count,Reset;
ff f0(A0, Count, Reset);
ff f1(A1, A0, Reset);
ff f2(A2, A1, Reset);
ff f3(A3, A2, Reset);
end module
moduleff
(Q, CLK, Reset);
output Q;
input CLK, Reset;
reg Q;
always @ (negedge CLK or negedge Reset)
if (~Reset)
Q=1’b0;

else Q=(~Q);
endmodule

RTL SCHEMATIC:

TECHNOLOGY SCHEMATIC:

PLACE AND ROUTE:

HARDWARE FUSING

RESULT:

Thus, the Hardware fusing and testing of 4-Bit counter was implemented in Spartan 3E FPGA

trainer kit using Xilinx project navigator.

EXP NO: 5
Date:

Analysis of Area, Power and Delay for Sequential Circuits

AIM:

To analyze area, power and delay for Counter and PRBS generator in FPGA Spartan 3E Trainer
kit using Xilinx project navigator.

APPARATUS REQUIRED:

S.No Nameofthe equipment/ software Quantity

1. PC with Windows 1

2. XilinxProject navigator 1

PROCEDURE:

1. Start the Xilinx ISE by using Start �Program files � Xilinx ISE � project navigator
2. Click File� New Project
3. Enter the Project Name and select the location then click next
4. Select the Device and other category and click next twice and finish.
5. Click on the symbol of FPGA device and then right click� click on new source.
6. Select the Verilog Module and give the file name �click next and define ports �click next and

finish.
7. Writing the Verilog Code in Verilog Editor.
8. Run the Check syntax � Process window� Synthesize� double click check syntax. If

any errors found then remove the errors with proper syntax & coding.
9. Synthesis your design, from the source window select, synthesis/implementation from the

window Now double click the Synthesis -XST.
10. After Synthesis, Click on the synthesis report to generate the area and delay summary.
11. Type the Net list and click save.
12. Implement the design by double clicking Implement design in the process window.
13. Then double click Generate Programming File, Double click Configure Target Device and click

OK.
14. Double click Create PROM File in the ISE iMPACT window, Select Storage Target Device as

Xilinx Flash PROM and click forward.
15. Add storage Device as xcf01s [2 M] and click forward, Type Output File Name and Location

and click OK.
16. Select the corresponding .bit file and click Open, Click No to Add another Device and Click

OK.
17. Double click Generate File.
18. Double click Boundary Scan and Right click on the window and select Initialize Chain, Now

Select the corresponding .mcs file and click open.
19. Click OK in the Device Programming Properties window, Download the Program on to the kit

by Right clicking on the device icon and select program.
20. Verify the output in the target device.

RIPPLE COUNTER:

CODING:

Module ripple counter (A0, A1,
Output A0,A1, A2,A3;
Input Count,Reset;
ff f0(A0, Count, Reset);
ff f1(A1, A0, Reset);
ff f2(A2, A1, Reset);
ff f3(A3, A2, Reset);
end module
moduleff
(Q, CLK, Reset);
output Q;
input CLK, Reset;
reg Q;
always @ (negedge CLK or
if (~Reset)
Q=1’b0;

else Q=(~Q);
endmodule

ANALYZE REPORT:

Area analysis:

Module ripple counter (A0, A1, A2, A3, Count, Reset)

always @ (negedge CLK or negedge Reset)

Power analysis:

Power summary: I(mA) P(mW)
Total estimated power consumption: 81

Vccint 1.20V: 26 31
Vccaux 2.50V: 18 45
Vcco25 2.50V: 2 5

Clocks: 0 0
Inputs: 0 0
Logic: 0 0

Outputs:
Vcco25 0 0
Signals: 0 0

Quiescent Vccint 1.20V: 26 31
Quiescent Vccaux 2.50V: 18 45
Quiescent Vcco25 2.50V: 2 5

Thermal summary:
Estimated junction temperature: 28C

Ambient temp: 25C
Case temp: 27C
Theta J-A: 31C/W

Delay Analysis:

Timing Summary:

Speed Grade: -4

 Minimum period: 2.554ns (Maximum Frequency: 391.543MHz)
 Minimum input arrival time before clock: No path found
 Maximum output required time after clock: 4.394ns
 Maximum combinational path delay: No path found

Timing Detail:

All values displayed in nanoseconds (ns)

===

Timing constraint: Default period analysis for Clock 'f2/Q'
 Clock period: 2.470ns (frequency: 404.858MHz)
 Total number of paths / destination ports: 1 / 1

Delay: 2.470ns (Levels of Logic = 1)
 Source: f3/Q (FF)
 Destination: f3/Q (FF)
 Source Clock: f2/Q falling
 Destination Clock: f2/Q falling

 Data Path: f3/Q to f3/Q
 Gate Net
Cell:in->out fanout Delay Delay Logical Name (Net Name)
 -- ------------
 FDC_1:C->Q 2 0.591 0.447 f3/Q (f3/Q)
 INV:I->O 1 0.704 0.420 f3/Q_not00011_INV_0 (f3/Q_not0001)
 FDC_1:D 0.308 f3/Q
 --
 Total 2.470ns (1.603ns logic, 0.867ns route)
 (64.9% logic, 35.1% route)
===
Timing constraint: Default period analysis for Clock 'f1/Q'
 Clock period: 2.554ns (frequency: 391.543MHz)
 Total number of paths / destination ports: 1 / 1

Delay: 2.554ns (Levels of Logic = 1)
 Source: f2/Q (FF)
 Destination: f2/Q (FF)
 Source Clock: f1/Q falling
 Destination Clock: f1/Q falling

 Data Path: f2/Q to f2/Q
 Gate Net
Cell:in->out fanout Delay Delay Logical Name (Net Name)
 -- ------------
 FDC_1:C->Q 3 0.591 0.531 f2/Q (f2/Q)
 INV:I->O 1 0.704 0.420 f2/Q_not00011_INV_0 (f2/Q_not0001)
 FDC_1:D 0.308 f2/Q
 --
 Total 2.554ns (1.603ns logic, 0.951ns route)
 (62.8% logic, 37.2% route)
===

Timing constraint: Default period analysis for Clock 'f0/Q'
 Clock period: 2.554ns (frequency: 391.543MHz)
 Total number of paths / destination ports: 1 / 1

Delay: 2.554ns (Levels of Logic = 1)
 Source: f1/Q (FF)
 Destination: f1/Q (FF)
 Source Clock: f0/Q falling
 Destination Clock: f0/Q falling

 Data Path: f1/Q to f1/Q
 Gate Net
Cell:in->out fanout Delay Delay Logical Name (Net Name)
 -- ------------
 FDC_1:C->Q 3 0.591 0.531 f1/Q (f1/Q)
 INV:I->O 1 0.704 0.420 f1/Q_not00011_INV_0 (f1/Q_not0001)
 FDC_1:D 0.308 f1/Q
 --
 Total 2.554ns (1.603ns logic, 0.951ns route)
 (62.8% logic, 37.2% route)
===

Timing constraint: Default period analysis for Clock 'Cout'
 Clock period: 2.554ns (frequency: 391.543MHz)
 Total number of paths / destination ports: 1 / 1

Delay: 2.554ns (Levels of Logic = 1)
 Source: f0/Q (FF)
 Destination: f0/Q (FF)
 Source Clock: Cout falling
 Destination Clock: Cout falling

 Data Path: f0/Q to f0/Q
 Gate Net
Cell:in->out fanout Delay Delay Logical Name (Net Name)
 -- ------------
 FDC_1:C->Q 3 0.591 0.531 f0/Q (f0/Q)
 INV:I->O 1 0.704 0.420 f0/Q_not00011_INV_0 (f0/Q_not0001)
 FDC_1:D 0.308 f0/Q
 --
 Total 2.554ns (1.603ns logic, 0.951ns route)
 (62.8% logic, 37.2% route)

===

Timing constraint: Default OFFSET OUT AFTER for Clock 'Cout'
 Total number of paths / destination ports: 1 / 1

Offset: 4.394ns (Levels of Logic = 1)
 Source: f0/Q (FF)
 Destination: A0 (PAD)
 Source Clock: Cout falling

 Data Path: f0/Q to A0
 Gate Net
Cell:in->out fanout Delay Delay Logical Name (Net Name)
 -- ------------
 FDC_1:C->Q 3 0.591 0.531 f0/Q (f0/Q)
 OBUF:I->O 3.272 A0_OBUF (A0)
 --
 Total 4.394ns (3.863ns logic, 0.531ns route)
 (87.9% logic, 12.1% route)

===
Timing constraint: Default OFFSET OUT AFTER for Clock 'f0/Q'
 Total number of paths / destination ports: 1 / 1

Offset: 4.394ns (Levels of Logic = 1)
 Source: f1/Q (FF)
 Destination: A1 (PAD)
 Source Clock: f0/Q falling

 Data Path: f1/Q to A1
 Gate Net
Cell:in->out fanout Delay Delay Logical Name (Net Name)
 -- ------------
 FDC_1:C->Q 3 0.591 0.531 f1/Q (f1/Q)
 OBUF:I->O 3.272 A1_OBUF (A1)
 --
 Total 4.394ns (3.863ns logic, 0.531ns route)
 (87.9% logic, 12.1% route)

===

Timing constraint: Default OFFSET OUT AFTER for Clock 'f1/Q'
 Total number of paths / destination ports: 1 / 1

Offset: 4.394ns (Levels of Logic = 1)
 Source: f2/Q (FF)
 Destination: A2 (PAD)
 Source Clock: f1/Q falling

 Data Path: f2/Q to A2
 Gate Net
Cell:in->out fanout Delay Delay Logical Name (Net Name)
 -- ------------
 FDC_1:C->Q 3 0.591 0.531 f2/Q (f2/Q)
 OBUF:I->O 3.272 A2_OBUF (A2)
 --
 Total 4.394ns (3.863ns logic, 0.531ns route)
 (87.9% logic, 12.1% route)

===

Timing constraint: Default OFFSET OUT AFTER for Clock 'f2/Q'
 Total number of paths / destination ports: 1 / 1

Offset: 4.310ns (Levels of Logic = 1)
 Source: f3/Q (FF)
 Destination: A3 (PAD)
 Source Clock: f2/Q falling

 Data Path: f3/Q to A3
 Gate Net
Cell:in->out fanout Delay Delay Logical Name (Net Name)
 -- ------------
 FDC_1:C->Q 2 0.591 0.447 f3/Q (f3/Q)
 OBUF:I->O 3.272 A3_OBUF (A3)
 --
 Total 4.310ns (3.863ns logic, 0.447ns route)
 (89.6% logic, 10.4% route)

===
CPU : 3.91 / 4.03 s | Elapsed : 4.00 / 4.00 s

PRBS GENERATOR:

CODING:

module prbs1 (rand, clk, reset);
inputclk, reset;
output rand;
wire rand;
reg [3:0] temp;
always @ (posedge reset) begin
temp<= 4'hf;
end
always @ (posedgeclk) begin
if (~reset) begin
temp <= {temp[0]^temp[1],temp[3],temp[2],temp[1]};
end
end
assign rand = temp[0];
endmodule

RTL SCEMATIC:

TECHNOLOGY SCHEMATIC:

temp <= {temp[0]^temp[1],temp[3],temp[2],temp[1]};

REPORT:

Area Analysis:

Power Analysis:

Power summary:
Total estimated power consumption:

Vccint 1.20V:
Vccaux 2.50V:
Vcco25 2.50V:

Inputs:

Outputs:
Vcco25
Signals:

Quiescent Vccint 1.20V:
Quiescent Vccaux 2.50V:
Quiescent Vcco25

Thermal summary:

Estimated junction temperature:
Ambient temp:

Case temp:
Theta J

Power summary: I(mA)
Total estimated power consumption:

Vccint 1.20V: 26
Vccaux 2.50V: 18
Vcco25 2.50V: 2

Inputs: 0

Outputs:
Vcco25 0
Signals: 0

Quiescent Vccint 1.20V: 26
Quiescent Vccaux 2.50V: 18
Quiescent Vcco25 2.50V: 2

Thermal summary:
Estimated junction temperature:

Ambient temp:
Case temp:
Theta J-A:

 P(mW)
81

31
45
5

0

0
0

31
45
5

28C
25C
27C

31C/W

Delay Analysis:

RESULT:

Thus, area, power and delay for Counter and PRBS generator was analyzed in FPGA

Spartan 3E Trainer kit using Xilinx project navigator.

area, power and delay for Counter and PRBS generator was analyzed in FPGA
Spartan 3E Trainer kit using Xilinx project navigator.

area, power and delay for Counter and PRBS generator was analyzed in FPGA

EXP NO: 6
Date:

Invoke PLL to generate Real Time Clock

AIM:

To invoke the FPGA Spartan 3E PLL to generate Real time Clock kit using Xilinx project
navigator.

APPARATUS REQUIRED:

S.No Nameofthe equipment/ software Quantity

1. PC with Windows 1

2. XilinxProject navigator 1

PROCEDURE:

1. Start the Xilinx ISE by using Start �Program files � Xilinx ISE � project navigator
2. Click File� New Project
3. Enter the Project Name and select the location then click next
4. Select the Device and other category and click next twice and finish.
5. Click on the symbol of FPGA device and then right click� click on new source.
6. Select the Verilog Module and give the file name �click next and define ports �click next and

finish.
7. Writing the Verilog Code in Verilog Editor.
8. Run the Check syntax � Process window� Synthesize� double click check syntax. If

any errors found then remove the errors with proper syntax & coding.
9. Synthesis your design, from the source window select, synthesis/implementation from the

window Now double click the Synthesis -XST.
10. After Synthesis, Click on the symbol of FPGA device and Right click and select New Source,

Select Implementation Constraints File and type file name and click next.
11. Type the Net list and click save.
12. Implement the design by double clicking Implement design in the process window.
13. Then double click Generate Programming File, Double click Configure Target Device and click

OK.
14. Double click Create PROM File in the ISE iMPACT window, Select Storage Target Device as

Xilinx Flash PROM and click forward.
15. Add storage Device as xcf01s [2 M] and click forward, Type Output File Name and Location

and click OK.
16. Select the corresponding .bit file and click Open, Click No to Add Another Device and Click

OK.
17. Double click Generate File.
18. Double click Boundary Scan and Right click on the window and select Initialize Chain, Now

Select the corresponding .mcs file and click open.
19. Click OK in the Device Programming Properties window, Download the Program on to the kit

by Right clicking on the device icon and select program.
20. Verify the output in the target device.

FPGA Connections to Seven-Segment Display

SEGMENT

A

B

C

D

E

F

G

DP

CLOCK SOURCE
Spartan3E FPGA works in different Clock frequencies

Clock Input

CLK
RST

Digit Enable Signals

Display DISP 1 DISP 2
FPGA PIN P1 P2

PLL OSCILLATOR SETTINGS
For PLL, ICS525-01 or ICS525-02 is used. Select
0 = Shorted
1 = Open

For any other CLK frequency in between 1MHz to 100MHz use the following formula.

Where,
Reference Divider Word (RDW) = 1 to 127 (0 is not permitted)
VCO Divider Word (VDW) = 4 to 511
Output Divider (OD) = values below

Segment Display

FPGA PIN

P8

P10

P9

P6

P4

P5

P3

P11

works in different Clock frequencies

Clock Input FPGA PIN

CLK A8
RST J6

DISP 3 DISP 4 DISP 5
P7 R4 R11

02 is used. Select the clock settings as per the PLL in the

For any other CLK frequency in between 1MHz to 100MHz use the following formula.

Reference Divider Word (RDW) = 1 to 127 (0 is not permitted)
VCO Divider Word (VDW) = 4 to 511 (0, 1, 2, 3 are not permitted)

DISP 6
N14

the clock settings as per the PLL in theOn board

For any other CLK frequency in between 1MHz to 100MHz use the following formula.

CODING:

System Clock = 20MHz
Verilog Program
// System clock Frequency 20MHz
// MODE Functions
// 00 HOURS
// 01 Minutes
// 10 Seconds
// 11 Timer ON

module timer(clk, rst, mode, set, sl, atoh);
inputclk; // System Clock
inputrst; // Reset(micro switch)
input [1:0] mode; // Mode Selection(switch 1 & switch 2)
input [7:0] set; // Set Value(switch 4 to switch 11)
output [5:0] sl; // Segment Selection
output [7:0] atoh; // Segment Display Control Data
reg [5:0] sl;
reg [7:0] atoh;
reg [26:0] sig2;
reg [19:1] sig3;
reg [7:0] ssdigit1;
reg [7:0] ssdigit2;
reg [7:0] ssdigit3;
reg [7:0] ssdigit4;
reg [7:0] ssdigit5;
reg [7:0] ssdigit6;
reg [3:0] digit1;
reg [3:0] digit2;
reg [3:0] digit3;
reg [3:0] digit4;
reg [3:0] digit5;
reg [3:0] digit6;
always @ (posedgeclk or negedgerst)
begin
if (rst == 1'b0) begin
sig2 = 0;
sig3 = 0;
digit1 = 0;
digit2 = 0;
digit3 = 0;
digit4 = 0;
digit5 = 0;
digit6 = 0;
end

else begin
if (mode == 2'b00) begin // Hours
if (set[7:4] <= 4'b0001) begin
digit1 = set[7:4];
if (set[3:0] <= 4'b1001)
digit2 = set[3:0];
else
digit2 = 0;
end
else if (set[7:4] == 4'b0010) begin
if (set[3:0] <= 4'b0011) begin
digit1 = set[7:4];
digit2 = set[3:0];
end
else begin
digit1 = 0;
digit2 = 0;
end
end
else begin
digit1 = 0;
digit2 = 0;
end
end
else if (mode == 2'b01) begin // Minutes
if (set[7:4] <= 4'b0101) begin
digit3 = set[7:4];
if (set[3:0] <= 4'b1001)
digit4 = set[3:0];
else
digit4 = 0;
end
else begin
digit3 = 0;
digit4 = 0;
end
end
else if (mode == 2'b10) begin // Seconds
if (set[7:4] <= 4'b0101) begin
digit5 = set[7:4];
if (set[3:0] <= 4'b1001)
digit6 = set[3:0];
else
digit6 = 0;
end
else begin
digit5 = 0;
digit6 = 0;
end
end

else begin
sig2 = sig2 + 1;

case (sig2[24:23]) //RTC Function
2'b00 : begin
digit6 = digit6 + 1;
if (digit6 > 4'b1001) begin
digit6 = 4'b0000;
digit5 = digit5 + 1;
if (digit5 > 4'b0101) begin
digit5 = 4'b0000;
digit4 = digit4 + 1;
if (digit4 > 4'b1001) begin
digit4 = 4'b0000;
digit3 = digit3 + 1;
if (digit3 > 4'b0101) begin
digit3 = 4'b0000;
digit2 = digit2 + 1;
if (digit2 > 4'b1001) begin
digit2 = 4'b0000;
digit1 = digit1 + 1;
end
if ((digit1 >= 4'b0010) & (digit2 >= 4'b0100))
begin
digit1 = 4'b0000;
digit2 = 4'b0000;
end
end
end
end
end

sig2[24:23] = 2'b01;
end

2'b11 : begin
if (sig2[22:19] == 4'b1001)
sig2 = 0;
end
default : begin
end
endcase
end

Display Settings
sig3 = sig3 + 1;
case (sig3[17:15])
3'b000 : begin
sl = 6'b111110;
case (digit1)
4'b0000 : ssdigit1 = 8'b00111111;
4'b0001 : ssdigit1 = 8'b00000110;
4'b0010 : ssdigit1 = 8'b01011011;
default : ssdigit1 = 8'b00000000;
endcase
atoh = ssdigit1;
end

3'b001 : begin
sl = 6'b111101;
case (digit2)
4'b0000 : ssdigit2 = 8'b00111111;
4'b0001 : ssdigit2 = 8'b00000110;
4'b0010 : ssdigit2 = 8'b01011011;
4'b0011 : ssdigit2 = 8'b01001111;
4'b0100 : ssdigit2 = 8'b01100110;
4'b0101 : ssdigit2 = 8'b01101101;
4'b0110 : ssdigit2 = 8'b01111101;
4'b0111 : ssdigit2 = 8'b00000111;
4'b1000 : ssdigit2 = 8'b01111111;
4'b1001 : ssdigit2 = 8'b01101111;
default : ssdigit2 = 8'b00000000;
endcase
atoh = ssdigit2;
end

3'b011 : begin
sl = 6'b111011;
case (digit3)
4'b0000 : ssdigit3 = 8'b00111111;
4'b0001 : ssdigit3 = 8'b00000110;
4'b0010 : ssdigit3 = 8'b01011011;
4'b0011 : ssdigit3 = 8'b01001111;
4'b0100 : ssdigit3 = 8'b01100110;
4'b0101 : ssdigit3 = 8'b01101101;
default : ssdigit3 = 8'b00000000
endcase
atoh = ssdigit3;
end

3'b100 : begin
sl = 6'b110111;
case (digit4)
4'b0000 : ssdigit4 = 8'b00111111;
4'b0001 : ssdigit4 = 8'b00000110;
4'b0010 : ssdigit4 = 8'b01011011;

4'b0011 : ssdigit4 = 8'b01001111;
4'b0100 : ssdigit4 = 8'b01100110;
4'b0101 : ssdigit4 = 8'b01101101;
4'b0110 : ssdigit4 = 8'b01111101;
4'b0111 : ssdigit4 = 8'b00000111;
4'b1000 : ssdigit4 = 8'b01111111;
4'b1001 : ssdigit4 = 8'b01101111;
default : ssdigit4 = 8'b00000000;
endcase
atoh = ssdigit4;
end

3'b110 : begin
sl = 6'b101111;
case (digit5)
4'b0000 : ssdigit5 = 8'b00111111;
4'b0001 : ssdigit5 = 8'b00000110;
4'b0010 : ssdigit5 = 8'b01011011;
4'b0011 : ssdigit5 = 8'b01001111;
4'b0100 : ssdigit5 = 8'b01100110;
4'b0101 : ssdigit5 = 8'b01101101;
default : ssdigit5 = 8'b00000000;
endcase
atoh = ssdigit5;
end

3'b111 : begin
sl = 6'b011111;
case (digit6)
4'b0000 : ssdigit6 = 8'b00111111;
4'b0001 : ssdigit6 = 8'b00000110;
4'b0010 : ssdigit6 = 8'b01011011;
4'b0011 : ssdigit6 = 8'b01001111;
4'b0100 : ssdigit6 = 8'b01100110;
4'b0101 : ssdigit6 = 8'b01101101;
4'b0110 : ssdigit6 = 8'b01111101;
4'b0111 : ssdigit6 = 8'b00000111;
4'b1000 : ssdigit6 = 8'b01111111;
4'b1001 : ssdigit6 = 8'b01101111;
default : ssdigit6 = 8'b00000000;
endcase
atoh = ssdigit6;
end
endcase
end
end
endmodule

RTL SCHEMATIC

TECHNOLOGY SCHEMATIC

HARDWARE FUSING

RESULT:

Thus, the FPGA Spartan 3E PLL was invoked to generate Real time Clock in kit using Xilinx
project navigator.

Procedure for simulationandimplementationof

LT SPICE
Procedure for simulationandimplementationofEDA tool--LtSPICE

TRANSISTOR MODELS

* Long channel models from CMOS Circuit Design, Layout, and Simulation,
* Level=3 models VDD=5V, see CMOSedu.com

*

.MODEL N_1u NMOS LEVEL = 3

+ TOX = 200E-10 NSUB = 1E17 GAMMA = 0.5
+ PHI = 0.7 VTO = 0.8 DELTA = 3.0

+ UO = 650 ETA = 3.0E-6 THETA = 0.1
+ KP = 120E-6 VMAX = 1E5 KAPPA = 0.3

+ RSH = 0 NFS = 1E12 TPG = 1
+ XJ = 500E-9 LD = 100E-9

+ CGDO = 200E-12 CGSO = 200E-12 CGBO = 1E-10
+ CJ = 400E-6 PB = 1 MJ = 0.5

+ CJSW = 300E-12 MJSW = 0.5

*

.MODEL P_1u PMOS LEVEL = 3
+ TOX = 200E-10 NSUB = 1E17 GAMMA = 0.6

+ PHI = 0.7 VTO = -0.9 DELTA = 0.1
+ UO = 250 ETA = 0 THETA = 0.1

+ KP = 40E-6 VMAX = 5E4 KAPPA = 1
+ RSH = 0 NFS = 1E12 TPG = -1

+ XJ = 500E-9 LD = 100E-9
+ CGDO = 200E-12 CGSO = 200E-12 CGBO = 1E-10

+ CJ = 400E-6 PB = 1 MJ = 0.5
+ CJSW = 300E-12 MJSW = 0.5

*

*

* Short channel models from CMOS Circuit Design, Layout, and Simulation,

* 50nm BSIM4 models VDD=1V, see CMOSedu.com

*

.model N_50n nmos level = 54
+binunit = 1 paramchk= 1 mobmod = 0

+capmod = 2 igcmod = 1 igbmod = 1 geomod = 0
+diomod = 1 rdsmod = 0 rbodymod= 1 rgatemod= 1

+permod = 1 acnqsmod= 0 trnqsmod= 0
+tnom = 27 toxe = 1.4e-009 toxp = 7e-010 toxm = 1.4e-009

+epsrox = 3.9 wint = 5e-009 lint = 1.2e-008
+ll = 0 wl = 0 lln = 1 wln = 1

+lw = 0 ww = 0 lwn = 1 wwn = 1
+lwl = 0 wwl = 0 xpart = 0 toxref = 1.4e-009

+vth0 = 0.22 k1 = 0.35 k2 = 0.05 k3 = 0
+k3b = 0 w0 = 2.5e-006 dvt0 = 2.8 dvt1 = 0.52
+dvt2 = -0.032 dvt0w = 0 dvt1w = 0 dvt2w = 0

+dsub = 2 minv = 0.05 voffl = 0 dvtp0 = 1e-007
+dvtp1 = 0.05 lpe0 = 5.75e-008 lpeb = 2.3e-010 xj = 2e-008
+ngate = 5e+020 ndep = 2.8e+018 nsd = 1e+020 phin = 0

+cdsc = 0.0002 cdscb = 0 cdscd = 0 cit = 0
+voff = -0.15 nfactor = 1.2 eta0 = 0.15 etab = 0

+vfb = -0.55 u0 = 0.032 ua = 1.6e-010 ub = 1.1e-017
+uc = -3e-011 vsat = 1.1e+005 a0 = 2 ags = 1e-020

+a1 = 0 a2 = 1 b0 = -1e-020 b1 = 0
+keta = 0.04 dwg = 0 dwb = 0 pclm = 0.18

+pdiblc1 = 0.028 pdiblc2 = 0.022 pdiblcb = -0.005 drout = 0.45
+pvag = 1e-020 delta = 0.01 pscbe1 = 8.14e+008 pscbe2 = 1e-007

+fprout = 0.2 pdits = 0.2 pditsd = 0.23 pditsl = 2.3e+006
+rsh = 3 rdsw = 150 rsw = 150 rdw = 150

+rdswmin = 0 rdwmin = 0 rswmin = 0 prwg = 0
+prwb = 6.8e-011 wr = 1 alpha0 = 0.074 alpha1 = 0.005
+beta0 = 30 agidl = 0.0002 bgidl = 2.1e+009 cgidl = 0.0002

+egidl = 0.8
+aigbacc = 0.012 bigbacc = 0.0028 cigbacc = 0.002

+nigbacc = 1 aigbinv = 0.014 bigbinv = 0.004 cigbinv = 0.004
+eigbinv = 1.1 nigbinv = 3 aigc = 0.017 bigc = 0.0028
+cigc = 0.002 aigsd = 0.017 bigsd = 0.0028 cigsd = 0.002

+nigc = 1 poxedge = 1 pigcd = 1 ntox = 1
+xrcrg1 = 12 xrcrg2 = 5

+cgso = 6.238e-010 cgdo = 6.238e-010 cgbo = 2.56e-011 cgdl = 2.495e-10
+cgsl = 2.495e-10 ckappas = 0.02 ckappad = 0.02 acde = 1

+moin = 15 noff = 0.9 voffcv = 0.02
+kt1 = -0.21 kt1l = 0.0 kt2 = -0.042 ute = -1.5
+ua1 = 1e-009 ub1 = -3.5e-019 uc1 = 0 prt = 0

+at = 53000
+fnoimod = 1 tnoimod = 0

+jss = 0.0001 jsws = 1e-011 jswgs = 1e-010 njs = 1
+ijthsfwd= 0.01 ijthsrev= 0.001 bvs = 10 xjbvs = 1

+jsd = 0.0001 jswd = 1e-011 jswgd = 1e-010 njd = 1
+ijthdfwd= 0.01 ijthdrev= 0.001 bvd = 10 xjbvd = 1

+pbs = 1 cjs = 0.0005 mjs = 0.5 pbsws = 1
+cjsws = 5e-010 mjsws = 0.33 pbswgs = 1 cjswgs = 5e-010

+mjswgs = 0.33 pbd = 1 cjd = 0.0005 mjd = 0.5
+pbswd = 1 cjswd = 5e-010 mjswd = 0.33 pbswgd = 1

+cjswgd = 5e-010 mjswgd = 0.33 tpb = 0.005 tcj = 0.001
+tpbsw = 0.005 tcjsw = 0.001 tpbswg = 0.005 tcjswg = 0.001

+xtis = 3 xtid = 3
+dmcg = 0e-006 dmci = 0e-006 dmdg = 0e-006 dmcgt = 0e-007

+dwj = 0e-008 xgw = 0e-007 xgl = 0e-008
+rshg = 0.4 gbmin = 1e-010 rbpb = 5 rbpd = 15

+rbps = 15 rbdb = 15 rbsb = 15 ngcon = 1

*

.model P_50n pmos level = 54
+binunit = 1 paramchk= 1 mobmod = 0

+capmod = 2 igcmod = 1 igbmod = 1 geomod = 0
+diomod = 1 rdsmod = 0 rbodymod= 1 rgatemod= 1

+permod = 1 acnqsmod= 0 trnqsmod= 0
+tnom = 27 toxe = 1.4e-009 toxp = 7e-010 toxm = 1.4e-009

+epsrox = 3.9 wint = 5e-009 lint = 1.2e-008
+ll = 0 wl = 0 lln = 1 wln = 1

+lw = 0 ww = 0 lwn = 1 wwn = 1
+lwl = 0 wwl = 0 xpart = 0 toxref = 1.4e-009

+vth0 = -0.22 k1 = 0.39 k2 = 0.05 k3 = 0
+k3b = 0 w0 = 2.5e-006 dvt0 = 3.9 dvt1 = 0.635
+dvt2 = -0.032 dvt0w = 0 dvt1w = 0 dvt2w = 0

+dsub = 0.7 minv = 0.05 voffl = 0 dvtp0 = 0.5e-008
+dvtp1 = 0.05 lpe0 = 5.75e-008 lpeb = 2.3e-010 xj = 2e-008
+ngate = 5e+020 ndep = 2.8e+018 nsd = 1e+020 phin = 0

+cdsc = 0.000258 cdscb = 0 cdscd = 6.1e-008 cit = 0
+voff = -0.15 nfactor = 2 eta0 = 0.15 etab = 0

+vfb = 0.55 u0 = 0.0095 ua = 1.6e-009 ub = 8e-018
+uc = 4.6e-013 vsat = 90000 a0 = 1.2 ags = 1e-020

+a1 = 0 a2 = 1 b0 = -1e-020 b1 = 0
+keta = -0.047 dwg = 0 dwb = 0 pclm = 0.55

+pdiblc1 = 0.03 pdiblc2 = 0.0055 pdiblcb = 3.4e-008 drout = 0.56
+pvag = 1e-020 delta = 0.014 pscbe1 = 8.14e+008 pscbe2 = 9.58e-007

+fprout = 0.2 pdits = 0.2 pditsd = 0.23 pditsl = 2.3e+006
+rsh = 3 rdsw = 250 rsw = 160 rdw = 160

+rdswmin = 0 rdwmin = 0 rswmin = 0 prwg = 3.22e-008
+prwb = 6.8e-011 wr = 1 alpha0 = 0.074 alpha1 = 0.005
+beta0 = 30 agidl = 0.0002 bgidl = 2.1e+009 cgidl = 0.0002

+egidl = 0.8

+aigbacc = 0.012 bigbacc = 0.0028 cigbacc = 0.002
+nigbacc = 1 aigbinv = 0.014 bigbinv = 0.004 cigbinv = 0.004

+eigbinv = 1.1 nigbinv = 3 aigc = 0.69 bigc = 0.0012
+cigc = 0.0008 aigsd = 0.0087 bigsd = 0.0012 cigsd = 0.0008

+nigc = 1 poxedge = 1 pigcd = 1 ntox = 1
+xrcrg1 = 12 xrcrg2 = 5

+cgso = 7.43e-010 cgdo = 7.43e-010 cgbo = 2.56e-011 cgdl = 1e-014
+cgsl = 1e-014 ckappas = 0.5 ckappad = 0.5 acde = 1

+moin = 15 noff = 0.9 voffcv = 0.02
+kt1 = -0.19 kt1l = 0 kt2 = -0.052 ute = -1.5
+ua1 = -1e-009 ub1 = 2e-018 uc1 = 0 prt = 0

+at = 33000
+fnoimod = 1 tnoimod = 0

+jss = 0.0001 jsws = 1e-011 jswgs = 1e-010 njs = 1
+ijthsfwd= 0.01 ijthsrev= 0.001 bvs = 10 xjbvs = 1

+jsd = 0.0001 jswd = 1e-011 jswgd = 1e-010 njd = 1
+ijthdfwd= 0.01 ijthdrev= 0.001 bvd = 10 xjbvd = 1

+pbs = 1 cjs = 0.0005 mjs = 0.5 pbsws = 1
+cjsws = 5e-010 mjsws = 0.33 pbswgs = 1 cjswgs = 5e-010

+mjswgs = 0.33 pbd = 1 cjd = 0.0005 mjd = 0.5
pbswd = 1 cjswd = 5e-010 mjswd = 0.33 pbswgd = 1

+cjswgd = 5e-010 mjswgd = 0.33 tpb = 0.005 tcj = 0.001
+tpbsw = 0.005 tcjsw = 0.001 tpbswg = 0.005 tcjswg = 0.001

+xtis = 3 xtid = 3
+dmcg = 0e-006 dmci = 0e-006 dmdg = 0e-006 dmcgt = 0e-007

+dwj = 0e-008 xgw = 0e-007 xgl = 0e-008
rshg = 0.4 gbmin = 1e-010 rbpb = 5 rbpd = 15
+rbps = 15 rbdb = 15 rbsb = 15 ngcon = 1

ELECTRIC VLSI DESIGN EDA TOOL

 Procedure for simulation and implementation of EDA tool-ELECTRIC

1. Start Electric: The following window will appear.

2. Towards the bottom of the window, Electric Messages Window will be found where
different messages can be found throughout any design.

3. The background color of the window can change as follows

Window –> Color Schemes –> White Background Colors

4. Let’s create a Library

Go to Explorer (beside the Components view); you will find LIBRARIES name as no
name

5. File –> Save Library As

Go to the location where design have to be save. (eg: $PATH/Electric/Designs)

Name the design (library name) eg. design_1.jelib

We would create our schematic and layout under this library

Now you will see design_1.jelib under LIBRARIES name in Explorer

6. Go to Preferences by clicking the following button or executing File –> Preferences…
7. Then you have to set the following.

Preferences –> Categories –> Technology –> Technology

mocmos Technology –> Metal layers –> 3 Layers

Keep submicron rules and Second Polysilicon Layer checked

Click the Analog checkbox.

8. To set the scale go to

File -> Preferences -> Technology -> Scale and set mocmos scale to 300 nm

9. Creating a new cell

Go to cell –> New Cell (or you can press ctrl + N). You will find a window like following.

Enter the name of the cell {----------------- } and click the view as {schematic}.

Press ok.

Now under the library design_1.jelib you can find a schematic cell named as ---------
{sch} with a red indicator as follows.

10. Now Press the Components. You will find the schematic components unlike the layout
components in the startup window.

11. Now we are finished with the setup and ready to fabricate a chip in the C5 process via
MOSIS

12. Checking of DRC (Design Rule Check)

To check DRC you can execute
press F5.

Once DRC is checked, you can see result in the

13. Layout vs. Schematic (LVS) in Electric is checked using
(NCC)

To check this, execute Tools
Window. You can run this command being in any design

We found a message like

For this we have to take care of the following

Go to File –> Preferences

Once again execute the NCC, now you will find the

ed with the setup and ready to fabricate a chip in the C5 process via

Checking of DRC (Design Rule Check)

To check DRC you can execute Tools –> DRC –> Check Hierarchically

Once DRC is checked, you can see result in the message window as follows:

vs. Schematic (LVS) in Electric is checked using Network Consistency Checking

Tools –> NCC –> Schematic and Layout views of Cell in Current
Window. You can run this command being in any design window (schematic / layout).

 sizes not checked.

For this we have to take care of the following

> Preferences –> Categories –> Tools –> NCC –> Check transistor sizes

Once again execute the NCC, now you will find the following message.

ed with the setup and ready to fabricate a chip in the C5 process via

> Check Hierarchically or you can

as follows:

Network Consistency Checking

> Schematic and Layout views of Cell in Current
window (schematic / layout).

> Check transistor sizes

14. Checking ERC (Well Check)

This process checks the connection of the n

The C5 process used here is an n
NMOS devices and should be grounded.

One of the electrical rule checks
substrate) is always connected to

Further, in this n-well process, if the design contains only
well should be connected to

For Well Check execute
bounded this key to Well Check).

The reason is as below:
In Digital Design all the N
connected to Ground.
Here we can see For N-Well,
But this Resistive_divider is not a digital design. Here the N
which is an anlog design

Checking ERC (Well Check)

This process checks the connection of the n-well and p-substrate.

The C5 process used here is an n-well process. The p-type substrate is common to all
NMOS devices and should be grounded.

al rule checks (ERCs) is to verify that the p-well
substrate) is always connected to ground.

well process, if the design contains only digital circuits
should be connected to VDD.

execute Tools –> ERC –> Check Wells or press
bounded this key to Well Check).

In Digital Design all the N-Wells to be connected to VDD and all the P

Well, Must connect to Power is checked.
But this Resistive_divider is not a digital design. Here the N-Well is used as a resister

anlog design.

type substrate is common to all

well (in this case p-

digital circuits then the n-

 W (as we have

and all the P-Wells to be

Well is used as a resister

So uncheck “Must connect to Power” under “For N-Well”. You will find zero Well
Check error.

15. Schematic Simulation

Now we would simulate the resistive divider circuit which has been built, and would
observe the output voltage w.r.t. a particular input voltage.

For this we need to write a SPICE code which would give the description of the input
voltage and would indicate the type of simulation we want to perform.

Writing SPICE Code

Go to the Components menu. Click on the arrowhead in the Misc box to add SPICE
code to the schematic as seen in the figure.

Place the SPICE code in the schematic and use Ctrl+I to edit its properties.

Ensure, in the SPICE code property box, that the Multi-line Text box is checked.

Add the code shown in the figure for specifying a SPICE transient analysis and
an input voltage source. The code indicates an input voltage of 1 V DC is applied to the
circuit. The analalysis would be a transient one for 1 second.

Press F5 to check the schematic.

16. Simulation of the Schematic

Go to Tools -> Simulation (Spice) -> Write Spice Deck.

The following LTspice window will open.

17. Resistive Divider Layout

Open the layout view of the Resistive_divider cell and then copy/paste (Ctrl+C/Ctrl+V)
an additional resistor.

Running a DRC (pressing F5) on the above layout results in the
following error .

By pressing > we see that there is too little space between the N-wells.

Move the Nodes apart until the layout passes the DRCs. Of-course the error will not
appear if you have initially placed both the resistors apart enough, which would satisfy
the MOSIS rule for space between N-wells.

Run DRC to check the design is free of error or not.

This layout cell should match the schematic cell. Verify this by running the NCC (aka
LVS check).

The following figure shows the Electric Messages for
layout and schematic (LVS)

18. Layout Simulation

The following figure shows the visible spice code.

Run a DRC, NCC, and a Well Check to ensure that there aren’t any errors.

This cell can be simulated following the same steps used for simula
view above.

Run DRC to check the design is free of error or not.

This layout cell should match the schematic cell. Verify this by running the NCC (aka

The following figure shows the Electric Messages for DRC of layout and
layout and schematic (LVS).

The following figure shows the visible spice code.

Run a DRC, NCC, and a Well Check to ensure that there aren’t any errors.

This cell can be simulated following the same steps used for simulating the schematic

This layout cell should match the schematic cell. Verify this by running the NCC (aka

and NCC of both

Run a DRC, NCC, and a Well Check to ensure that there aren’t any errors.

ting the schematic

Simulate this cell using LTspice now.

The following figure shows the simulation output from LTspice for the Resistive_divider
layout.

* BSIM3 models for AMI Semiconductor's C5 process

*

* Don't forget the .options scale=300nm if using drawn lengths

* and the MOSIS SUBM design rules

*

* 2<Ldrawn<500 10<Wdrawn<10000 Vdd=5V

* Note minimum L is 0.6 um while minimum W is 3 um

* Change to level=49 when using HSPICE or SmartSpice

.MODEL NMOS NMOS (LEVEL = 8

+VERSION = 3.1 TNOM = 27 TOX = 1.39E-8

+XJ = 1.5E-7 NCH = 1.7E17 VTH0 = 0.6696061

+K1 = 0.8351612 K2 = -0.0839158 K3 = 23.1023856

+K3B = -7.6841108 W0 = 1E-8 NLX = 1E-9

+DVT0W = 0 DVT1W = 0 DVT2W = 0

+DVT0 = 2.9047241 DVT1 = 0.4302695 DVT2 = -0.134857

+U0 = 458.439679 UA = 1E-13 UB = 1.485499E-18

+UC = 1.629939E-11 VSAT = 1.643993E5 A0 = 0.6103537

+AGS = 0.1194608 B0 = 2.674756E-6 B1 = 5E-6

+KETA = -2.640681E-3 A1 = 8.219585E-5 A2 = 0.3564792

+RDSW = 1.387108E3 PRWG = 0.0299916 PRWB = 0.0363981

+WR = 1 WINT = 2.472348E-7 LINT = 3.597605E-8

+XL = 0 XW = 0 DWG = -1.287163E-8

+DWB = 5.306586E-8 VOFF = 0 NFACTOR = 0.8365585

+CIT = 0 CDSC = 2.4E-4 CDSCD = 0

+CDSCB = 0 ETA0 = 0.0246738 ETAB = -1.406123E-3

+DSUB = 0.2543458 PCLM = 2.5945188 PDIBLC1 = -0.4282336

+PDIBLC2 = 2.311743E-3 PDIBLCB = -0.0272914 DROUT = 0.7283566

+PSCBE1 = 5.598623E8 PSCBE2 = 5.461645E-5 PVAG = 0

+DELTA = 0.01 RSH = 81.8 MOBMOD = 1

+PRT = 8.621 UTE = -1 KT1 = -0.2501

+KT1L = -2.58E-9 KT2 = 0 UA1 = 5.4E-10

+UB1 = -4.8E-19 UC1 = -7.5E-11 AT = 1E5

+WL = 0 WLN = 1 WW = 0

+WWN = 1 WWL = 0 LL = 0

+LLN = 1 LW = 0 LWN = 1

+LWL = 0 CAPMOD = 2 XPART = 0.5

+CGDO = 2E-10 CGSO = 2E-10 CGBO = 1E-9

+CJ = 4.197772E-4 PB = 0.99 MJ = 0.4515044

+CJSW = 3.242724E-10 PBSW = 0.1 MJSW = 0.1153991

+CJSWG = 1.64E-10 PBSWG = 0.1 MJSWG = 0.1153991

+CF = 0 PVTH0 = 0.0585501 PRDSW = 133.285505

+PK2 = -0.0299638 WKETA = -0.0248758 LKETA = 1.173187E-3

+AF = 1 KF = 0)

*

.MODEL PMOS PMOS (LEVEL = 8

+VERSION = 3.1 TNOM = 27 TOX = 1.39E-8

+XJ = 1.5E-7 NCH = 1.7E17 VTH0 = -0.9214347

K1 = 0.5553722 K2 = 8.763328E-3 K3 = 6.3063558

+K3B = -0.6487362 W0 = 1.280703E-8 NLX = 2.593997E-8

+DVT0W = 0 DVT1W = 0 DVT2W = 0

+DVT0 = 2.5131165 DVT1 = 0.5480536 DVT2 = -0.1186489

+U0 = 212.0166131 UA = 2.807115E-9 UB = 1E-21

+UC = -5.82128E-11 VSAT = 1.713601E5 A0 = 0.8430019

+AGS = 0.1328608 B0 = 7.117912E-7 B1 = 5E-6

KETA = -3.674859E-3 A1 = 4.77502E-5 A2 = 0.3

+RDSW = 2.837206E3 PRWG = -0.0363908 PRWB = -1.016722E-5

+WR = 1 WINT = 2.838038E-7 LINT = 5.528807E-8

+XL = 0 XW = 0 DWG = -1.606385E-8

+DWB = 2.266386E-8 VOFF = -0.0558512 NFACTOR = 0.9342488

+CIT = 0 CDSC = 2.4E-4 CDSCD = 0

+CDSCB = 0 ETA0 = 0.3251882 ETAB = -0.0580325

DSUB = 1 PCLM = 2.2409567 PDIBLC1 = 0.0411445

+PDIBLC2 = 3.355575E-3 PDIBLCB = -0.0551797 DROUT = 0.2036901

+PSCBE1 = 6.44809E9 PSCBE2 = 6.300848E-10 PVAG = 0

+DELTA = 0.01 RSH = 101.6 MOBMOD = 1

+PRT = 59.494 UTE = -1 KT1 = -0.2942

+KT1L = 1.68E-9 KT2 = 0 UA1 = 4.5E-9

+UB1 = -6.3E-18 UC1 = -1E-10 AT = 1E3

+WL = 0 WLN = 1 WW = 0

+WWN = 1 WWL = 0 LL = 0

+LLN = 1 LW = 0 LWN = 1

+LWL = 0 CAPMOD = 2 XPART = 0.5

+CGDO = 2.9E-10 CGSO = 2.9E-10 CGBO = 1E-9

+CJ = 7.235528E-4 PB = 0.9527355 MJ = 0.4955293

+CJSW = 2.692786E-10 PBSW = 0.99 MJSW = 0.2958392

+CJSWG = 6.4E-11 PBSWG = 0.99 MJSWG = 0.2958392

+CF = 0 PVTH0 = 5.98016E-3 PRDSW = 14.8598424

+PK2 = 3.73981E-3 WKETA = 5.292165E-3 LKETA = -4.205905E-3

AF = 1 KF = 0)

EXP NO: 7
Date:

Ring Oscillator

AIM:

To design, analyze and simulate the ring oscillator using LT-SPICE.

APPARATUS REQUIRED:

S.No Nameofthe equipment/ software Quantity

1. PC with Windows 1

2. LT-SPLICE 1

PROCEDURE:

1. Start “LTSpice XVII” (or earlier version)
2. Start a new Project under the File -> New Schematic
3. Make sure , files are saved in a convenient directory. The root directory (C:\) or Desktop

are probably not good choices. I would suggest creating a directory “C:\Circuits” and
saving your work there

4. Double click on LTspice XVII item �Select the file menu � double click save button
5. Click on component button �click type nmos� click on nmos4 item � select ok

�click left in screen � press cntl+E for required number of nmos
6. Follow step 5 for selecting pmos4 device.

7. Click on wire button and give connection in circuit diagram
8. Click the ground button and place in screen and give connection using wire.
9. Click voltage in component list and place in screen. Give connection using wire.
10. Click on spice directive button and type “.include level 3 and 54.txt” then click ok
11. Click File menu � select save as and select desktop item outline item and select the file

name and type the name of file then give ok.
12. Click on run button.

13. Obtain the Transient analysis of Ring oscillator

Circuit Diagram:

3 stage ring oscillator

3 stage ring oscillator using CMOS

using CMOS

SCHEMATIC:

SIMULATION OUTPUT:

Calculation:

The frequency of oscillation formula for ring oscillator is

� =
1

2��

Here T = time delay for single inverter

n = number of inverters in the oscillator

RESULT:

Thus the Ring oscillator is simulated using LT-SPICE.

EXP NO: 8
Date:

Differential Amplifier

AIM:

To design, analyze and simulate the Differential Amplifier using LT-SPICE.

APPARATUS REQUIRED:

S.No Nameofthe equipment/ software Quantity

1. PC with Windows 1

2. LT-SPLICE 1

PROCEDURE:

1. Start “LTSpice XVII” (or earlier version)
2. Start a new Project under the File -> New Schematic
3. Make sure , files are saved in a convenient directory. The root directory (C:\) or Desktop

are probably not good choices. I would suggest creating a directory “C:\Circuits” and
saving your work there

4. Double click on LTspice XVII item �Select the file menu � double click save button
5. Click on component button �click type nmos� click on nmos4 item � select ok

�click left in screen � press cntl+E for required number of nmos
6. Follow step 5 for selecting pmos4 device.

7. Connect the Circuit as schematic.

8. Click on spice directive button and type “.include BISM4_models.txt” then click ok
9. Click File menu � select save as and select desktop item outline item and select the file

name and type the name of file then give ok.
10. .To Obtain the AC analysis, Click on spice directive button and type “.ac oct 20 7 150”

then click ok
11. To Obtain the DC analysis, Click on spice directive button and type “.dc V1 -5 5 1m”

then click ok
12. To Obtain the Transient analysis,Click on spice directive button and type “.tran 4m” then

click ok

SCHEMATIC:

Symbol:

Circuit:

AC ANALYSIS:

SIMULATION OUTPUT:

DC ANALYSIS

SIMULATION OUTPUT:

Transient Analysis:

SIMULATION OUTPUT:

Differential Mode Gain:

Differential Mode Gain:

Common Mode Gain:

Calculation:

��		 = 	
��

��

��			��	�� = 	20	���	
��

��

��
 = ������������	�������	����

��
 =	
����

�1 − �2

V1= 5mv V2= 1mvVout =

��
 = ��!!��	!���	�������	����

��
 =	
����

(�1 + �2)/2

V1= 5mv V2= 5mv Vout =

RESULT:

Thus the Differential Amplifier is simulated and CMRR is determined using LT-SPICE.

EXP NO: 9
Date:

CMOS Inverter

AIM:

To design a CMOS inverter using the Schematic entry tool - Electric and verify its
functioning.

APPARATUS REQUIRED:

S.No Nameofthe equipment/ software Quantity

1. PC with Windows 1

2. ELECTRIC-EDA Tool 1

PROCEDURE:

1. Start Electric VLSI system Design tool.

2. Start a new Project under the File -> New Schematic

3. Make sure, files are saved in a convenient directory. Save as filename.jelib under
LIBRARIES name in Explorer

4. Go to Preferences by clicking the following button or executing File –> Preferences Then
set the following.

a. Preferences –> Categories –> Technology –> Technology
5. Go to cell –> New Cell � Schematic

6. Go to Components. The schematic components will appear unlike the layout
components in the startup window.

7. Connect the Circuit as shown in Figure

8. To check DRC ,execute Tools –> DRC –> Check Hierarchically
9. To check NCC, execute Tools –> NCC –> Schematic and Layout views of Cell in

Current Window.
10. For Well Check execute Tools –> ERC –> Check Wells
11. Go to the Components menu. Click on the arrowhead in the Misc box to add SPICE

code to the schematic . Place the SPICE code in the schematic
12. Go to Tools -> Simulation (Spice) -> Write Spice Deck.
13. Obtain the output waveform of CMOS Inverter.

SCHEMATIC

Symbol:

SIMULATION OUTPUT:

RESULT

Thus the design & simulation of a CMOS inverter has been carried out using
Electric EDA Tools.

SIMULATION OUTPUT:

Thus the design & simulation of a CMOS inverter has been carried out using

Thus the design & simulation of a CMOS inverter has been carried out using schematic of

EXP NO: 10
Date:

Layout CMOS Inverter

AIM:

To draw the layout of CMOS Inverter using Electric EDA tool and extract the SPICE code.

APPARATUS REQUIRED:

S.No Nameofthe equipment/ software Quantity

1. PC with Windows 1

2. ELECTRIC-EDA Tool 1

PROCEDURE:

1. Start Electric VLSI system Design tool.

2. Start a new Project under the File -> New Schematic

3. Make sure, files are saved in a convenient directory. Save as filename.jelib under
LIBRARIES name in Explorer

4. Go to Preferences by clicking the following button or executing File –> Preferences Then
set the following.

a. Preferences –> Categories –> Technology –> Technology
5. Go to cell –> New Cell � Schematic

6. Go to Layers. The Layer components will appear unlike the schematic components in
the components window.

7. Connect the Layout as shown in Figure

8. To check DRC ,execute Tools –> DRC –> Check Hierarchically
9. To check NCC, execute Tools –> NCC –> Schematic and Layout views of Cell in

Current Window.
10. For Well Check execute Tools –> ERC –> Check Wells
11. Go to the Components menu. Click on the arrowhead in the Misc box to add SPICE

code to the schematic . Place the SPICE code in the layout
12. Go to Tools -> Simulation (Spice) -> Write Spice Deck.
13. Obtain the output waveform of CMOS Inverter.

LAYOUT:

3D VIEW:

SPICE Code:

SIMULATION OUTPUT:

RESULT:

Thus the layout of CMOS Inverter

layout of CMOS Inverter was verified through Electric EDA tool

.
EXP NO: 11
Date:

CMOS Inverter – Place and Route

AIM:

To design placement and routing, and post placement androuting parameters and observe logical
effort for CMOS Inverter using Electric EDA tools.

APPARATUS REQUIRED:

S.No Nameofthe equipment/ software Quantity

1. PC with Windows 1

2. ELECTRIC-EDA Tool 1

PROCEDURE:

1. Start Electric VLSI system Design tool.

2. Start a new Project under the File -> New Schematic

3. Make sure, files are saved in a convenient directory. Save as filename.jelib under
LIBRARIES name in Explorer

4. Go to Preferences by clicking the following button or executing File –> Preferences Then
set the following.

a. Preferences –> Categories –> Technology –> Technology
5. Go to cell –> New Cell � Schematic

6. Go to Components. The schematic components will appear unlike the layout
components in the startup window.

7. Connect the Circuit as shown in Figure

8. To check DRC ,execute Tools –> DRC –> Check Hierarchically
9. To check NCC, execute Tools –> NCC –> Schematic and Layout views of Cell in

Current Window.
10. For Well Check execute Tools –> ERC –> Check Wells
11. Go to the Components menu. Click on the arrowhead in the Misc box to add SPICE

code to the schematic . Place the SPICE code in the schematic
12. Go to Tools -> Simulation (Spice) -> Write Spice Deck.
13. Go to Tools� Placement �FloorPlanning to obtain place and route of Inerter
14. Go to Tools � Logic effort � Logic Effort libraries to obtain logic effort of Inverter.

Floor Planning:

Place and Route:

Report:

RC MODEL:

LOGIC EFFORT:

RESULT:

Thus the post placement androuting parameters
observed using Electric EDA tools.

post placement androuting parameters and logical effort of CMOS Inverter are
EDA tools.

and logical effort of CMOS Inverter are

EXP NO: 12
Date:

Layout CMOS NAND Gate

AIM:

To draw the layout of CMOS NAND using Electric EDA tool and extract the SPICE code.

APPARATUS REQUIRED:

S.No Nameofthe equipment/ software Quantity

1. PC with Windows 1

2. ELECTRIC-EDA Tool 1

PROCEDURE:

1. Start Electric VLSI system Design tool.

2. Start a new Project under the File -> New Schematic

3. Make sure, files are saved in a convenient directory. Save as filename.jelib under
LIBRARIES name in Explorer

4. Go to Preferences by clicking the following button or executing File –> Preferences Then
set the following.

a. Preferences –> Categories –> Technology –> Technology
5. Go to cell –> New Cell � Schematic

6. Go to Layers. The Layer components will appear unlike the schematic components in
the components window.

7. Connect the Layout as shown in Figure

8. To check DRC ,execute Tools –> DRC –> Check Hierarchically
9. To check NCC, execute Tools –> NCC –> Schematic and Layout views of Cell in

Current Window.
10. For Well Check execute Tools –> ERC –> Check Wells
11. Go to the Components menu. Click on the arrowhead in the Misc box to add SPICE

code to the schematic . Place the SPICE code in the layout
12. Go to Tools -> Simulation (Spice) -> Write Spice Deck.
13. Obtain the output waveform of CMOS NAND.

SCEMATIC:

SYMBOL:

LAYOUT:

3D VIEW:

Simulation Output:

RESULT:

Thus the layout of CMOS NAND

layout of CMOS NAND was verified through Electric EDA tool

EXP NO: 13
Date:

Static Timing Analysis

AIM:

To study the given circuit and perform static timing analysisusing Synopsys - PrimeTime STA
tools.

APPARATUS REQUIRED:

S.No Nameofthe equipment/ software Quantity

1. PC with Windows 1

2. Synopsys -PrimeTime STA tool 1

PROCEDURE:

Invoke PrimeTime STA tool

To invoke PrimeTime, choose either options
pt_shell(command mode)
primetime& (GUI mode)

Command mode is preferred because:
a. The command mode helps you to keep a record of what you have done.
b. The command mode runs more efficiently than GUI mode.
c. The command mode helps you to lookup the manual/reference quickly.

In spite of the above advantages, command mode sometimes is not as good as GUImode in terms
of debugging the schematic problem.

Start Operating PrimeTime STA tool

STA Environment Setting for TSMC 0.13um Technology:

1. Set search path (If it has not been set up yet)

setsearch_path "./home/raid2_2/course/cvsd/CBDK_IC_Contest/CIC/SynopsysDC/db"

2. Set link library

setlink_path "* typical.dbfast.dbslow.db"

Read Gate level Netlist Files and Link design:

1. Type these lines to read in CIC .18 library and your gate level netlist.
read_verilog ./Counter_syn.v

2. Link all designs
link_designCounter
Note, to check the search path and include library, if the errormessage occurred after step 2.

Read Timing and RC information:

Reads leaf cell and net timing and RC information from a file in SPEF Format anduses that
information to annotate the current design.
read_parasiticscounter.spef
Note: The file can be get during synthesis with “write_parasitics” comment.

Set Operating Conditions:

set_operating_conditions typical -library typical

Set Design Constraints:
This step tells the Dft Compiler how many scan chains
related pins (scan_enable, scan_in, scan_out).

1. Specify the clock name, period, and clock characteristic
create_clock -period 10 -waveform {0 5} [get_portsclk]
setdesign_clock [get_clockclk]
set_clock_uncertainty 0.5 $design_clock
set_clock_latency -min 1.5 $design_clock
set_clock_latency -max 2.5 $design_clock
set_clock_transition -min 0.25 $design_clock
set_clock_transition -max 0.30 $design_clock
set_propagated_clock $design_clock

2. Set wire load model
set_wire_load_model -name "ForQA"

3. Set wire load mode
set_wire_load_mode top

4. Report
report_design
report_reference

Compiler how many scan chains are needed. specify the names of scan
related pins (scan_enable, scan_in, scan_out).

1. Specify the clock name, period, and clock characteristic
waveform {0 5} [get_portsclk]

set_clock_uncertainty 0.5 $design_clock

min 1.5 $design_clock
max 2.5 $design_clock

min 0.25 $design_clock
max 0.30 $design_clock

set_propagated_clock $design_clock

name "ForQA" -library "typical"

. specify the names of scan

Timing analysis and report possible problems:

This step checks your scan specification for consistency. Please type the followingcommands to
set the input/output delay:
set_input_delay 1.5 [get_portsinputA] -clock $design_clock
set_input_delay 1.5 [get_portsinputB] -clock $design_clock
set_input_delay 1.5 [get_ports instruction] -clock $design_clock
set_input_delay 1.5 [get_ports reset] -clock $design_clock
set_output_delay 1.5 [get_portsalu_out] -clock $design_clock
And then check the timing:
check_timing
settrue_delay_prove_true_backtrack_limit 20000
report_timing -true
report_bottleneck

RESULT:

Thus the static timing analysis of the given circuit has been studied.

EXP NO: 14
Date:

DfT – Scan Chain Insertion

AIM:

To study the given circuit and perform DfT-Scan chain insertion using Synopsys -
TetraMaxtools.

APPARATUS REQUIRED:

S.No Nameofthe equipment/ software Quantity

1. PC with Windows 1

2. Synopsys - TetraMax tool 1

PROCEDURE:

 Invoke DftCompiler

Dft Compiler is actually embedded in the Design Compiler.

To invoke Dft Compiler, choose either options.

dc_shell(command mode)
dv& (GUI mode)

Command mode is preferred because:

a. Command mode helps you to keep a record of what you have done.
b. Command mode runs more efficiently than GUI mode.
c. Command mode helps you to lookup the manual/reference quickly.

In spite of the above advantages, command mode sometimes is not asgood as GUI mode in terms
of debugging the schematic problem.

NOTE: maybe occurrence of some error message like “Error: current design notdefined.” just
ignore it for now.

STEP 1: Read Input Files

1. Please check there is no error message when starting the “dc_shell”. If there are errors in
the windows, please check the .synopsys_dc.setup. Type either one of these lines to read
your gate level netlist (The circuit after synthesis).

read_verilogfilename.v
read_filefilename.v -format Verilog

2. Set the working design to you top design. In this case, set ALU as the working design.
current_design ALU

3. Resolve the design references and check if there is any errors.
Link check_design

4. Set the design constraints and check if the designs have any violations. The constraints.tcl
is based on the constraints that you used in the synthesis lab.
sourceconstraints.tcl
report_constraint -all_violators

5. To obtain a timing/area/power report of your original design, type (where ALU is your
top design)
report_area>filename.area_rpt
report_timing>filename.timing_rpt
report_power>filename.power_rpt

STEP 2: Select scan style
Define the default scan style for the insert_dft command if a scanstyle is not specified

with the set_scan_style command. Thisvariable must identify one of the following supported
scan styles:multiplexed_flip_flop, clocked_scan, lssd, aux_clock_lssd,combinational, or none.
You can skip this step because the defaultis multiplexed_flip_flop.

settest_default_scan_stylemultiplexed_flip_flop

STEP 3: Set ATE configuration and create test protocol

The timing of the test clock is based on the test_default_period,test_default_delay,
test_default_strobe, and test_default_strobe_widthvariables.
settest_default_delay 0
settest_default_bidir_delay 0
settest_default_strobe 40
settest_default_period 100
To create a test protocol for a non-scan design, you can just type
create_test_protocol -infer_asynch -infer_clock
When -infer_asynch is specified, create_test_protocol infersasynchronous set and reset signals in
the design, and places them at offstate during scan shifting. When -infer_clock is
specified,create_test_protocol infers test clock pins from the design, and pulsesthem during scan
shifting.

STEP 4: Pre-scan Check

Check if there is any design constraint violations before scan insertion.
report_constraint -all_violators
Perform pre-scan test design rule checking.
dft_drc

STEP 5: Scan specification

This step tells the Dft Compiler how many scan chains
names of scan related pins (scan_enable, scan_in,scan_out).

set_scan_configuration

STEP 6: Scan preview
This step checks your scan specification for consistency. Please type
preview_dft

STEP 7: scan chain synthesis

Stitch your scan cells into a chain. And do some more optimizations.
insert_dft

Check if there is any design constraint violations before scan insertion.
all_violators

scan test design rule checking.

Compiler how many scan chains needed. This allows to
names of scan related pins (scan_enable, scan_in,scan_out).

set_scan_configuration -chain_count 1

This step checks your scan specification for consistency. Please type

Stitch your scan cells into a chain. And do some more optimizations.

This allows to specify the

STEP8: Post-scan check
Check if there is any design constraint violations after scan insertion.
report_constraint -all_violators
Perform post-scan test design rule checking.
dft_drc

Check if there is any design constraint violations after scan insertion.
all_violators

scan test design rule checking.

STEP 9: Reports
Report the scan cells and the scan paths
report_scan_path -view existing
report_scan_path -view existing

To obtain a timing/area report of your scan_inserted design, type

report_timing>ALU_syn_dft.timing_rpt

RESULT:

Thus the DfT-Scan chain insertion

Report the scan cells and the scan paths
view existing -chain all >ALU_syn_dft.scan_path
view existing -cell all >ALU_syn_dft.scan_cell

To obtain a timing/area report of your scan_inserted design, type
report_timing>ALU_syn_dft.timing_rpt

Scan chain insertion of the given circuit has been studied.

